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Positivity-Preserving Flux Difference Splitting Schemes

Bernard Parerit

A positivity-preserving variant of the Roe flux differengaliting method is here proposed.
Positivity-preservation is attained by modifying the Rokeme such that the coefficients of the
discretization equation become positive, with a coeffic@msidered positive if all its eigen-
values are positive and if its eigenvectors correspond dsettof the flux Jacobian. Because
the modification does not alter the wave speeds at the interthe appealing attributes of the
Roe flux difference splitting schemes are retained, sucliggsresolution capture of discontin-
uous waves, low amount of artificial dissipation within \dss layers, and ease of convergence
to steady-state. The proposed flux function is advantaged mrevious positivity-preserving
variants of the Roe method by being written in general médtnim and hence by being readily
deployable to arbitrary systems of conservation laws. Téecils are extended to second-order
accuracy through a newly-derived positivity-preservistgl-variation-diminishing limiting pro-
cess that is applied to the characteristic variables artd/tblas positive coefficients. Also de-
rived is a positivity-preserving restriction on the timegsfor flux difference splitting schemes
that is shown to depart significantly from the CFL conditianégions with high property gra-
dients.

1. Introduction

RIGINALLY published more than three decades ago, the Roedifi@rence splitting scheme [1, 2] remains today one

of the most used methods to discretize the convection d@gawithin fluid flow systems of conservation laws. The
lasting popularity of the Roe scheme lies in it having thdofeing three properties: (i) it is monotonicity-presergirii) it
introduces minimal dissipation within viscous layers amtdntinuities, and (iii), it is written in general matrigrim. Indeed,
when arithmetic averaging instead of Roe averaging is usddtermine the Jacobian at the interface, the Roe flux isanrih
general matrix form because it is function only of the fluxteecof the vector of conserved variables, and of the eigeesa
and eigenvectors of the flux Jacobian. This makes it possibtieploy the Roe scheme, without modification, to arbitrary
systems of conservation laws. Other commonly-used fluxelization approaches may have one or two of the propett#s j
listed, but not all three. For instance, the Godunov exaetrRann solver [3], the HLLC approximate Riemann solver [4{ a
the AUSM method [5] are not written in general matrix form,ileithe Steger-Warming flux vector splitting method [6] and
the HLL approximate Riemann solver [7] suffer from excesslissipation within viscous layers.

The Roe scheme has nonetheless one major disadvantageoyeting methods: it is not positivity-preserving. Py
preservation refers to the capability of a discretizati@msil to maintain the positivity of the determinative peies, with the
latter being the properties that must be positive for thetsmh to be physically-permissible. For instance, the deteative
properties associated with the Euler equations are thetgdearsd the temperature; the determinative propertiescistsal
with the multispecies Favre-averaged Navier-Stokes émpswvould further include the partial densities, the tlebae kinetic
energy, and its dissipation rate. The Roe scheme is wellvknot to maintain the positivity of the determinative projes,
with the effect that negative densities, temperatures rnutance kinetic energies appear occasionally in the isolutThis
can be remedied through a “clipping” of the determinativeparties after each iteration to ensure that they remaisipalyy
meaningful. But such is an undesirable fix because, whelingplimne-accurate cases, this leads to a loss of consematicch
can induce substantial error within the solution, and whawiisg steady-state cases, this further leads to convesgissues
often preventing a converged solution altogether.

Despite the considerable interest over the years to deaefmsitivity-preserving variant of the Roe flux functiomited
success has been reported to date. For instance, in ReEif8ldt et al show that a modification of the averaging pescat
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the interfaces cannot lead to positivity-preservationatTib, it is not possible to make the Roe scheme positivigserving

by substituting the Roe average by an arithmetic averageyother type of averaging process. More success is repiorted
Refs. [9, 10], in which Dubroca proposes a new family of Roérioes: the eigenvectors and eigenvalues are not obtained
from the convective flux Jacobian as is usually done, buerdiiom a matrix that is as close as possible to the flux Janobia
while resulting in a positivity-preserving discretizatistencil. However, the approach proposed by Dubroca i¢darb the
one-dimensional Euler equations and it is not clear howritlma extended to the Euler equations in multiple dimensilets,
alone to other systems of conservation laws including #esjport equations of nitrogen vibrational energy, tunbcéekinetic
energy, partial densities, etc.

Meanwhile, some progress in positivity-preserving theforyfluid flow systems of conservation laws has been reported
that is of particular interest. In Ref. [11], a new approaemed the “rule of the positive coefficients” is proposed taftcr
positivity-preserving discretization stencils. Using ttule of the positive coefficients, Parent derives in Re2] HLnew set of
total-variation-diminishing (TVD) limiters which are admtaged over the conventional limiters by being positipitgserving.
The positivity-preserving TVD stencils proposed by Paaetparticularly appealing for two reasons: (i) they do ntioduce
more dissipation than the conventional TVD stencils, aijdtffey are written in general matrix form. That is, the sitnc
depend solely on the vector of conserved variables and diuthdacobian and can hence be readily deployed to any system o
conservation laws. However, because the method is a semoled extension of the Steger-Warming scheme, it suffera the
same limitations as the latter and hence introduces exeedisisipation within viscous layers compared to Roe fluxfioms.

The goal of this paper is to use the rule of the positive cdefiis to craft a novel variant of the Roe flux function that is
positivity-preserving and that is written in general mafarm (i.e. only function of the flux vector, of the vector afrtserved
variables, and of the flux Jacobian). The proposed methoeriséhadvantaged over previous positivity-preservingavdsi of
the Roe method by being readily extendable to any systemrnfezgation laws, and is advantaged over previous pogiivit
preserving Steger-Warming schemes by being capable tareayiscous layers with high resolution.

This paper is organized as follows. First, an outline is gieéthe rule of the positive coefficients including its padsi
limitations. Then, the Roe scheme is recast in a form sindahe Steger-Warming flux vector splitting method in order t
ease the task of attaining positivity-preserving stendilgs is followed by the outline of novel positivity-presérg variants of
the Roe flux functions written in general matrix form, and ofcvel positivity-preserving condition on the time step liqgble
to flux difference splitting schemes. Lastly, several testes solving the Euler equations and the Navier-Stokegiegeare
presented to assess the positivity-preserving and résolcapabilities of the proposed stencils compared to tmeeational
Roe methods.

2. Rule of the Positive Coefficients

The rule of the positive coefficients can be summarized dsvisl Consider a discretization equation updating theoreut
conserved variablds at theith node as follows:

C/HUM = CU; + Ci Uiy + G Uiy + 1)

wherei is the grid indexn the iteration count, and wherg, C; ., etc are the discretization coefficients (in matrix formy. |
Ref. [11], it is demonstrated that a discretization stemaintains the positivity of the determinative propertiedang as all
the coefficients within the discretization equation areitp@s A “determinative property” here refers to a propettiat must
necessarily be positive to be physically meaningful (sugtha pressure, the density, etc), and a “positive coefficiefers to
a coefficient with all-positive eigenvalues and with the saigenvectors as those of the respective flux Jacobian:
C;=L7'D'L;, C_,=L D' Li_ . Cu=L7} D5 Ly . .. )

whereL andL ™" correspond to the left and right eigenvectors of the flux BesoandD * to a diagonal matrix with all-positive
diagonal elements. Although the proof presented in Rel.igllimited to the perfect-gas Euler equations, there adeations
that the rule of the positive coefficients remains valid fives physical models. For instance, when solving a mixtfigases,
the eigenvectors and eigenvalues associated with thei@uilispecies conservation equations have a similar forthase
associated with the total mass conservation equation. ,Thbowing the same steps as in the Appendix of Ref. [11]aih c
be shown that the positivity of each species density is aopdeas long as the coefficients within the discretizationatign
are all positive. Similar arguments can also be made for tititianal transport equations related to turbulence niodel
when a two-equation turbulence model is solved in conjenattith the mass, momentum, and energy transport equattans,
turbulence kinetic energy and its dissipation rate can log&vsho remain positive should the rule of the positive coeffits
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be enforced. What is more challenging to demonstrate, hexvesswhether the internal energy (and hence, the pressdre a
temperature) would remain positive when the system of awatien laws include these additional transport equatamor
when the gas is non perfect. The most that can be stated adt#lgie is that no negative pressures and temperatures were
encountered in doing numerous numerical experiments oélamaltispecies gas including a two-equation turbulence@ho

as long as the discretization equation obeyed the rule gidkdgive coefficients. While this does not constitute a firbaloes

shed hope that the rule of the positive coefficients is natdidito the perfect-gas Euler equations but also appliethter gets

of equations commonly encountered in fluid mechanics, anugps even in plasmadynamics.

3. Recast of Flux Difference Splitting Schemes in Flux VectdSplitting Form

The first-order Roe flux difference splitting schemes is hexeritten (without loss of generality) in a form similar tbet
Steger-Warming flux vector splitting methods. The reasarttis will become apparent in subsequent sections when some
positivity-preserving variants of the Roe flux functions aerived. To do so, first note that the Roe flux differencetspdi
scheme yields a flux at the interface of the form [1]:

1 1 1
Fiti10 = EFI + EEJH — §|A|i+l/2(Ui+l -U) (3)

whereF is the convective fluxl/ the vector of conserved variables, dud the Roe matrix equivalent to:
|A| = L7'|A|L (4)

whereL is the left eigenvector matrix,~! is the right eigenvector matrix\ is the eigenvalue matrix of the convective flux
Jacobiad = 0F/dU, and|A] is the absolute value of the eigenvalue matrix obtained ffoby taking the absolute value of
all elements. To ensure that the scheme does not inducemaiepl phenomena, it is necessary to correct the eigeevaplart

of the matrix| 4| as follows:
Alr = \JIAR, + 82 (5)

with a the speed of sound ardda user-defined parameter. Then recast Eq. (3) in Steger-vagfhax vector splitting form as
follows:

Fiti = LflAeri U; + L;41_1A7+1Li+1Ui+1 (6)

where A are diagonal matrices that will be determined below. It ifedcthat because the eigenvectors are obtained from
the Jacobiam which is defined agt = dF/dU, it follows that Eq. (6) necessarily implies that the set gfi@ions must be
homogenous of degree 1. But this is not a particular sourcemtern: not only do the perfect-gas Euler equations hase th
property, but so do various other sets of equations usedite sompressible fluid flow (such as the multi-species real-g
Euler equations, the Favre-averaged Navier-Stokes esattc). Further, should the set of equations not be honemyes of
degree 1, the methods developed herein can still be use@ptbthe matrix4 is redefined such thatU = F.

By imposing the condition that the flux in Steger-Warmingnfiosutlined in Eq. (6) must be equal to the flux in Roe form
outlined in Eq. (3), it is apparent that the following two edjties must hold:

1 1
L;]A,'JrLiUi =-IF+ E|A|i+l/2Ui (7)

2

1o 1 1
LI A Lini Uiy = EFi+1 - §|A|i+1/2Ui+1 (8)
The latter essentially consist of the definitions of the diza matrices\ *. Then, note that for a system of conservation laws
that is homogeneous of degree one, the convective flux camitemasF;, = A;U; = L7'A;L;U;. After making the latter

substitution and multiplying all terms in Eq. (7) iy, the following is obtained:
; ! 1
AL U; = EAiLiUi + ELilAliJrl/ZUi 9)

Rewrite the latter in tensor form and divide all terms[yU.], :

1 1[Li|Ali12Ui],

A =3

=3 (10)
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Starting from Eq. (8) and following a similar procedure alined above, an expression far- can be found:

1 1 L[ A[ U,'
[Ai_+l]rr =~ [Aini], — —[ +1Ali1/2Ui],
: 2 2 [Liv1Uisi],

(11)

In the latter 2 equations, the last term on the RHS can be seiendlve a division by the characteristic variab[ésU;],. It
may be argued that this could lead to a division by zero inisglthe Euler equations in multiple dimensions. This is not a
cause for concern, however, because there exists a setemiveitfors and eigenvalues for the 2D and 3D Euler equatians t
is such that the characteristic variables never become(geeathe Appendix of Ref. [12] for instance).

It is emphasized that, thus far, the Roe scheme has not bedifiedpbut has simply been recast in a different form, simila
to the one used to express the Steger-Warming flux vectdtisglmethod. Indeed, by substituting Egs. (10) and (11 k.
(6), one would obtain exactly the Roe scheme.

4. Proposed Positivity-Preserving Flux Difference Spliing Schemes

Some novel first-order flux functions are now proposed thitimethe appealing features of the Roe scheme while being
positivity-preserving. The schemes are derived for a 1Dehlyplic system of conservation laws, which can be written in
discrete form as:

Ul‘n+l _Ui E+1/2_E—1/2

At Ax

whereU is the vector of conserved variabldsjs the convective fluxy denotes the time level, arids the grid index along.
Although the schemes are here derived in 1D, they can bededidn 2D and 3D through dimensional splitting while renagni
positivity-preserving.

The first-order Roe scheme can be made positivity-presgtwnmodifying the eigenvalues* outlined above in Egs.
(10)-(11) such that the discretization equation conforonthe rule of the positive coefficients. To determine the diors
on A that result in the discretization equation satisfying thie of the positive coefficients, first substitute the irdedf flux
outlined in Eq. (6) into the discrete equation (12). Thiddse

=0 (12)

Ut —u; N L7'AFLU + L} A7 Lia Uiy LA LU + LA LU

0 13
At Ax Ax (13)

The latter can then be rewritten in standard discretizatgumtion form as follows:
C,»"+1Ui’l+l =C_U_1+CU; +Ci11U; 1, (14)

with the discretization coefficients defined as:
Ax
c't'= 7L, 15
! At ! (15)
1 [ Ax n _
C=L7"|—I—-A"+A7 )L (16)
At

Cifl = L;ll Ajl] Li*l (17)
Citi=—-L7 A7, Lt (18)

According to the rule of the positive coefficients, a disizaion stencil is positivity-preserving if all the coefénts are positive
[11]. For a coefficient to be considered positive, two candi must be fulfilled. First, its eigenvectors must coroegpto
those of the convective flux Jacobian evaluated at the qooreing node. This can be verified to be the case for all thgeabo
coefficients. Second, its eigenvalues must all be posilités is always true for the coefficiet”t', and can become true for
the coefficientC; should the time step be sufficiently small. The other two ficiehts,C;_, andC,,,, are guaranteed to be
positive only if all the diagonal elements within the mattx are positive and if all the diagonal elements within the iratr
A~ are negative. Unfortunately, this is not the case for the fbeme. Indeed, the* and A~ matrices associated with the
Roe flux function (as derived in the previous section) mayyielt positive coefficients. This becomes clear when Eq3) (1
and (11) are rewritten as:

l[L[+l|A|[+l/2Ui+l]r
2 [Liy1Uipil,

oe . 1
[Ai_Jrl]:r = min (0’ 5 [Aiti],, —

1 1[Li1 Al g
) + max((), (A, — [Lit1|Ali41/2U, +1]r)
- (19)

2 [Lip1 Ui,

positivity-preserving not necessarily positivity-preserving
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oe 1 L[L;[Ali+1,2Ui], - 1 1[L;|Ali41/2Ui]
[\Jr R = max| 0, — A,- N L min|{ 0, — A,‘ ——
[T = max(0. 5 (Al + 5 et ) 5 1A, + 5 T

positivity-preserving not necessarily positivity-preserving

(20)

Clearly, the last term on the RHS of the latter two equatioay nesult inA* matrices that may not conform to the rule of
the positive coefficients. To make the Roe scheme poskjuigserving theA ™ eigenvalues presented in Eq. (20) must be
modified to be always positive, and tiAe™ eigenvalues presented in Eq. (19) must be modified to be alwagative. Then,
the coefficients of the discretization equation would resfiee rule of the positive coefficients, and the scheme wbattbme
positivity-preserving. One way this can be accomplishdayisnoving the negative terms froh™ to A~ and by moving the
positive terms from\~ to A *:

. 1 1 [Lit1|Al;i U; . 1 1[L;|A|; U;

(A ] =meL—mHm,—J H|hu2+m)+mmox_m¢r+_[||“n10

o 2 T2 [Liq Ui, 2 T2 LU, (1)
positivity-preserving positivity-preserving
1 1 [L;|A|; Ui, 1 1[Liv1]|Al; Uitil,

[A?_]“ = maX(O, _[A,]rr+_M)+max(o, _[A[JFI])‘)‘__[ +l| | t1/2 +l]))

" 2 T2 LU, 2 T2 LU, (22)
positivity-preserving positivity-preserving

The approach proposed here has the advantage of not alteeirRpe wave speed at the interface: the amount of wave speed
lost on the left node corresponds to the amount of wave sp&ieedjon the right node and vice versa.

A positivity-preserving variant of the Roe scheme can hdiecebtained by substituting the lattér- and A~ eigenvalues
in the flux at the interface outlined in Eq. (6):

Fitip = Li_lGi_'_ + Li_JilGi_Jrl (23)

with Gt = A*LU. As will be shown in Section 8 below through some test cabedatter flux function yields results that are
very close to those obtained with the conventional Roe nukttithin shocks, expansion fans, and contact discontiesithut
introduces slightly more dissipation within high-Reymnsidumber laminar viscous layers.

4.1. lterative Form

To reduce the dissipation within viscous layers, an altéra@approach is here proposed to determine the positivaagdtive
eigenvalues that result in a closer agreement with ther@igtoe method, albeit at the expense of algorithm compiekhis
is accomplished by first substituting the positive and nega&igenvalues outlined in Egs. (10) and (11) into the Roedhithe
interface Eq. (6). After some reformatting, the followisgobtained:

FS =LY LU + L Z0 L Uy + LY LU + L Z8 Li Ui (24)

positivity-preserving not necessarily positivity-preserving

with the diagonal matrice* and Z* set equal to:

_ : 1 L[Li|Aliy12Ui],

Y. = 0, = [A,; S L 25

[ i ]r,r mln( ’ 2 [ ]r.r + 2 [LiUi]r ( )
. 1 1[L;+1]Al; U;

[Z,]  =min{0, = [Ai4i],, — HEiilAli1/2Uinl, (26)
e 2 T2 [Lit Ui,
1 L[Li|Ali1,2Ui],

Yt = 0, = [A; Sl L e L 27

[ z :Ir,r max( > 2[ ]r,r + 2 [L[U[]r ( )
1 1[L;|Al; U;

(7], = max(0. 5 (0,1, — 3l tinl) 28)
e 2 T2 [Liv1Uit],

Thus far, the Roe scheme has not been modified. But the teatarthpositivity-preserving have been separated fronettizg
are not necessarily positivity-preserving. Indeed, tret fivo terms on the RHS of Eq. (24) are positivity-presenbrgause
they result in discretization coefficients that are posifive., with positive eigenvalues and the same eigenveeamthose of
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the flux Jacobian) or that can become positive for a small ghndme step. On the other hand, the last two terms on the RHS
of Eq. (24) are not positivity-preserving because they nesyit in one or more of the discretization coefficients hgwine or
more negative eigenvalues.

It follows that one way that the stencil could be made pasjtipreserving is simply by dropping the last two terms oa th
RHS of Eq. (24). But, by doing so, the Roe scheme would be neabiffubstantially and some of its desirable attributes may
be lost in the process. For this reason, instead of disogttie two terms that are not necessarily positivity-presepet
us recast them into new terms, some of which being guaratteas positivity-preserving. This can be accomplished s fir
defining the diagonal matricgg and.S such that the following two statements hold:

L7\ RigiLig Uiy = LY LU (29)
L7'S:LiUs = Ly, Zi Lia Uy (30)

Then, using the latter two definitions, the flux at the inteefeEq. (24), can be rewritten as:
Fi5n = +L7" (VT 4+ SOLiU; + Ll (Zi, + Rig) LiiUsy (31)

where the matrice® andS can be obtained in terms of the other matrices by multipifaath sides of Egs. (29) and (30) by
L; 4, writing in tensor form, and then isolatingand S

[Livi LY LU,
[Li+1Ui+l]r

LiL7 L\ ZY Ly Uiy
[Si],., = Ly : J&] ) (33)
Now, let us split again the terms within the Roe flux in termgoéitivity-preserving fluxes and not-necessarily-puoit
piit ag
preserving fluxes. This can be done by rewriting Eq. (31) as:

[Ri+1]r.r = (32)

Fis = L7 ()" LU + L (Z5 )" i U + L7 (V)" LU+ L (Z5 )" L Uiy (34)

positivity-preserving not necessarily positivity-preserving

where the superscript is an iteration counter such th@™ ! refers to an update of the properties Then, for Eq. (34) to be
equal to the Roe flux at the interface, Eq. (31), the upd&tédnd Z* diagonal matrices must be equal to:

[y 10 = min (0, [v]7, + IS0, ) (35)
(51T = min (0, [Z0,]), + (Rl (36)
[ = max(o, [v*]), +si07,) @7
[z = max(0, [Z7,]), + (Rl ) (38)

where the notatio)” denotes the property) at the previous iteration count. Then, after substitutihgndS from Eq. (32)
and (33) the latter 4 equations become:

m m LiL'_l Z+ le_ Ui -
197 = min 0. e, LS ) @9
_oqmEl _ m [Li+IL,‘71(Y,'7)mLiUi]r
221 =m0 [z, T+ g O @0
m m L[L'_l Z+ le_ i -
[y = maX(O, (], + (L5 [f_'()]_] +'U+1]’) (41)
m m Li L'i] Y'i mLiUi
[ijH]r:rl =max(0, [Z ], + Lol () L (42)
' ' [Li+1Ui+l]r
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By performing several iterationg = 1,2, 3, .., the latter set of equations essentially transforms (ashnascpossible) the
not-necessarily-positivity-preserving terms into pegit-preserving terms (see Eqg. (34)). However, it is nateat when used
in conjunction with Eq. (34), the latter expressions fof and Z* will yield exactly the Roe scheme independently of how
many times the matrices* andZ* are updated. To make the scheme positivity-preservingjtetie flux at the interface,
Eq. (34), as:

Fiyip= LflAeriUi + L;41_1A7+1Li+1Ui+1 (43)

with the positive eigenvalues™ being set to the sum of the positive wave speeds from botlethard right nodes:

and with the negative eigenvaluas defined as the sum of the negative wave speeds originatinglath the left and right
nodes:
Ai_+1 =Zi,+Y (45)

Compared to the original Roe scheme, the latter flux funaimes not modify the wave speed at the interface: the wavelspee
lost by the right node is gained by the left node and viceaieBgcause of this, it retains the desirable attributesebtiginal
method such as low dissipation within viscous layers, hagwolution in the vicinity of discontinuities, and ease ofieergence

to steady-state.

In summary, the “iterative form” of the positivity-presémg Roe scheme presented in this section consists of (idlizing
theY* andZ* diagonal matrices using Egs. (25) to (28), (i) updating¥feand Z* diagonal matrices through an iterative
process by using Egs. (39) to (42), (iii) determining theifpesand negative eigenvalues through Egs. (44) and (45guke
latest updates of thE* andZ* matrices, and (iv) determining the flux at the interface a&dn(43). It is here recommended
to update the* and Z* matrices only two times, as further updating the latter ioasrseldomly results in a noticeable
improvement of the solution while requiring more computgfiprt.

5. Positivity-Preserving Second-Order FDS Flux Functions

One way the Roe scheme can be extended to second-order@oathike remaining monotonicity-preserving is through tise
of TVD limiters applied to the characteristic variables asgmsed by Yee [13, 14, 15]. Commonly denoted as the “Ye€-Roe
scheme, such a strategy has enjoyed considerable poputesiblving compressible viscous flows because it is secde+
accurate and, like the first-order Roe scheme, it introdlitiesdissipation in viscous layers, it is monotonicityegerving, and
it converges reliably for a wide variety of flow conditions.

The Yee-Roe flux at the interface can be written as follows:

1 1 1 1
Fiyp= EE + §E+l - EL,»J:]/2|A|i+1/2Mi+1/2 + ELiJil/2|A|i+1/2q>i+1/2Mi+1/2 (46)

first-order Roe terms second-order Yee terms

where the vectoM, , ,,, is defined as:
Mi+1/2 = Li+1/2(Ui+1 - Ui) (47)

and where the diagonal elements within the limiter matrexset as follows:

minmod([M; _,»], , [Mit1,2],, [Miys2],)
(M 112],

where the minmod function returns the argument with the lstahagnitude if the arguments all share the same sign andfze
the arguments are of mixed signs. A possible division by perthe RHS of Eq. (48) can be avoided by adding a small constant
to the denominator, as is common practice when implemettimyee-Roe scheme. This does not pose problems when doing
computations because the minmod function on the humeralioalways be as low in magnitude as the denominator, hence
keeping the limiter function bounded.

As was shown above, the first-order Roe terms can be recastxivdlctor splitting form with the positive and negative
eigenvalue matriceda * as outlined in Egs. (10) and (11). Without loss of generafity. (46) can hence be rewritten in
flux-vector splitting form as:

[Dit1/2],, = (48)

1
Fiti = L;IA,-JrLiUi + L;41_1A7+1Li+1Ui+1 + EL,-]]_I/2|A|i+1/2q>i+1/2Mi+1/2 (49)
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Now, let us recast the second-order Yee terms in a form thrabeaeasily made positivity-preserving. For this purpoke, t
second-order terms can be rewritten similarly to the pasitpreserving TVD schemes proposed by Parent for flux afect
splitting methods in Ref. [12]. This can be accomplishedodiewis. First note that the absolute value of the eigenvala#ix
can be rewritten as:

1 1
|A|i+l/2 = E (Ai+l/2 + |A|i+l/2) - E (Ai+l/2 - |A|i+l/2) (50)
Substitute the latter in the former:
1

—L7 s (N iz + | lig12) @ig1/oMigi)2

Fiii=1L; A+L Ui + Lz+1A,+1Lz+1Uz+| +
4 (51)

~ 3 Ll (Mg = A lig12) Pig1oMig1)n

Keep the latter on hold. Now, define the limiter matriges such that the following hold:

1
L7, L, (GH, -G = EL;I/Z (A2 + Aliv172) Pigr2Miga,2 (52)
Ll+1‘yf+1/z(Gl+1 -G)) = 5 ,+1/2 (ANivr2 = IA]iv1/2) Piv1/aMig1)2 (53)
whereG* is defined as:
G*=A*LU (54)

After substituting Eq. (52) and Eq. (53) into Eq. (51) the Yeae flux becomes:

1 1
Fz+l/2 - L A+L U + Lz+IAI+1Ll+]U1+1 + ZL \D1+1/2(G1+1 - Gi ) 2L1+1\D17+1/2(G1+1 - G;) (55)

where the? ™ diagonal limiter matrix can be obtained by first multiplyiatj terms within Eq. (52) byi;, then rewriting in
tensor form, and then isolating™:

[\Il+ ] _ [L L7 (N2 + [Alig1)2) q>i+1/2Mi+1/2]r
i+1/2 ) [Gl_:_l — Gl.+:|r

(56)

Similarly, to obtain an expression for thie~ diagonal limiter matrix, multiply all terms within Eq. (53)y L, ,, rewrite in
tensor form, and isolaté—:

(W], = [Livi Lo Nivryo = A liv1/2) Pigr1oMig o], (57)
i+1/2 2[G;+] —G,f]r

1

As is commonly done with other TVD limiter functions, a smadler-defined constant is added to the denominator on the RHS
of Egs. (56) and (57) to prevent a division by zero. This isproblematic and does not lead to a significant dependence of
the flux on an arbitrary user-defined constant because tlietifanction ¥ is eventually multiplied by the same quantity that
appears on its denominator when calculating the flux fundticeq. (55).

Thus far, the Yee-Roe flux has not been modified. Indeed, wierigenvalued * outlined in Egs. (10)-(11) and the
limiter matricesw* outlined in Egs. (56)-(57) are substituted in Eq. (55), tie #t the interface corresponds exactly to the
conventional Yee-Roe flux outlined in Eq. (46).

The reason why the Yee-Roe flux has been rewritten in Stegemiilg flux-vector splitting form is to obtain positivity-
preserving conditions on the limiter matrix, which can beivi following the approach outlined in Ref. [12]. This wdu
yield the following ranges on the limiter matrices (see Apqti® A for a derivation):

2[Gi], - 2[Gi],

1[G, 1671, <[l < (G, — 1G], 8)
2[G], 2[GE1],

“EEl o] et EE T (59’
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We can then combine Eg. (57) and the positivity-preservimgddion (58), and further combine Eg. (56) and the poditivi
preserving condition (59) to obtain positivity-presexyi@xpressions for the limiter matricds™ and ¥, respectively:

[‘If,'_+1/2]r,, = max| — 7}3 [Gijrl]r , mi [L[HLi_Jil/z (Biis2 = |[}|i+1/2) cDi+l/2Mi+l/2]r’ : [Gj—+1], (60)
[AGiJrl/z]r 2 [AGiJrI/Z]r [AGiJrl/z]r
And similarly, we can obtain a positivity-preserving rarfgethe limiter matrix¥+:
(W], = max( - EIGT] | i (L i B2 @iioMivia], | §[GT], (61)
" [AG;Z‘I/z]r 2 [AG;Z‘I/z]r [AGztrl/z]r

with the limiter matrix® defined in Eq. (48) and the vectdf defined in Eq. (47). The positivity-preserving expressifmms
the limiter matrices expressed in Egs. (60) and (61) are usednjunction with the flux at the interface, Eq. (55), whizdn
be rewritten in the following computationally efficient for

_ 1o I o_ | _
Fi+l/2 = Li lGi+ + Li-‘,l-lGi+l + ELi 1\IJ:'++1/2AG;’-_|-1/2 - ELi-',l-llei+l/2AGi+l/2 (62)

with G= = A*LU andAG# |, = G, —G. For the stencil to be positivity-preserving, the positiviel negative eigenvalues
A¥ (which are used to calculate the vect6rs) must be determined either as specified in Egs. (21)-(22 spacified in Egs.
(44)-(45), and the user-defined constamust be less than 2:

0<€&<2 (63)

Because of errors due to round-off when using double-pmtigariables within the computer code, it is necessary td fix
to 1.99 for most problems. Further, and rather interestirigivering to within the rangeé.5 < £ < 1.0 can help prevent
the solution from diverging to aphysical states when usigl) kime steps, and can also help prevent convergence hdmgs w
solving steady-state problems. For these reagpisgyiven a value of 0.5 for all the test cases here considered.

6. Positivity-Preserving Time Step

In the previous sections, it was found that by imposing thed@@n that the coefficients of the neighbor nodes withia th
discretization equation must be positive, some first-oashel second-order flux functions could be obtained that as#ipity-
preserving. However, such is not sufficient to ensure thatdilscretization equation conforms to the rule of the pasiti
coefficients and that the solution remains positivity-presg. Indeed, while the flux functions proposed above enthat the
coefficients of the neighbor nodes are positive, they do nstiee that the coefficient of the central node is positivas idsue
is here addressed by determining the conditions necessabtain a central node coefficient that is positive for battforder
and second-order flux functions. Following the same steps Bef. [12], it can be easily demonstrated that this leadbi¢o
following condition on the time step:

Ax /([Al.*]” — [A;]”) vr for a first-order flux function

At < (64)

Ax /(2 [Af],, -2 [A,.—]”) Vr for a second-order flux function

It is emphasized that, when computing the positivity-preisg restrictions on the time step for flux difference dpii
schemes, it is important to use the expressionsAféroutlined in Section 4 above (see Egs. (21)-(22) and Eqs-(@®)).
Interestingly, in regions of uniform properties, it can h@wn that the positive and negative eigenvalues outline®kiction 4
are equal to the usual definition (i.&8* = 1(A £]AJ)), and that the time step restrictions expressed in Eq. @4$spond to
the one obtained from the CFL condition for a first-order flurdtion and to half of the one obtained from the CFL condition
for a second-order flux function. However, such is not theedagregions with non-uniform properties, where the positiv
and negative eigenvalues proposed herein do not collagbe tasual definition. Then, the time step restrictions @efiere
can differ significantly from those given by the CFL conditjavith a tenfold discrepancy not being unusual in the vigiof
contact surfaces or shock waves.
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7. Interface Averaging

For the schemes proposed herein, the Jacobian at the aedead its corresponding eigenvectors and eigenvalues)ar
determined through the Roe average but rather through adiypeithmetic averaging. It is here preferred not to use the
Roe average because its use is found to yield unreasonapyNMach numbers within vacuums, and this eventually leads t
difficulties to maintain positivity due to round-off erroimdeed, because the temperature is obtained from the &hemargy,
and because the thermal energy is obtained by subtractnkirietic energy from the total energy, the temperature ineso
increasingly tainted with round-off errors when the kinethergy is large compared to the thermal energy (which sagben
the Mach number becomes large). This problem can be mogiided by replacing the Roe average by a type of arithmetic
average at the interface. Specifically, the Jacobian mattixe interface between cells is obtained from the densitycities,
and speed of sound as follows:

Aivr2 = A(Pit1/25 Qiv1y2, Uit1/2) (65)

where the density and velocityu at the interface are obtained through an arithmetic meaiie e sound speed at the
interface is fixed to the maximum between the left and righinsibspeeds:

1 1
Pi+1/2 = E(pi + 0it1) » Uitz = E(ui +Uit1) . Qi1 = MaXa;, a;yr) (66)

Fixing the interface sound speed in this manner as opposad &rithmetic mean is found to improve, albeit slightly, the
resolution within viscous layers. The type of averagindiatihterface proposed herein is not an “arithmetic aveigier se

as it involves a max function. Nonetheless, for simpliaitg, shall refer to the latter as “arithmetic averaging” taidguish it
from the Roe average.

It is noted that by determining the Jacobian at the interéeceutlined above, one important property of the Roe scheme
is lost: that is, a contact discontinuity can not be captueattly within one cell. Numerical experiments indicatewever,
that such is not a source of concern. For instance, whenngpbontact discontinuities propagating in time in a sholo&tu
(i.e. the Riemann problem), little or no difference can beesbed between the arithmetic and the Roe averaging proesdu
Similarly, little discernible difference in solutions ddube observed within shocks and expansion fans occurririggital
aerodynamic flowfields. The only instance that the use of Reeaging is found to improve somewhat the resolution is upon
solving high-Reynolds-number laminar boundary layerserEthen, the gains in resolution are limited to the flow regiery
close to the leading edge, and such does not impact sigrilfidhe overall skin friction. Furthermore, numerous siatidns
of flows of practical interest indicate that an arithmetiemaging procedure introduces minimal dissipation withirbtilent
boundary layers, hence leading to a small number of nodegedde obtain a grid-converged solution (see on this poiat th
grid convergence studies in Ref. [16] where the Roe scherasdd along with an arithmetic averaging procedure to solve
supersonic turbulent flows).

Additionally to preventing the Mach number from reachingessively high values within vacuums, the arithmetic ayera
is advantaged over the Roe average by being straightfortwateploy to arbitrary systems of conservation laws. Indede:n
the governing equations are not limited to the mass, momenand total energy transport equations, but also incluberot
equations (such as the transport of turbulence kineticggrend vibrational energy for instance), it is not clear hoe Roe
average procedure should be modified to ensure that consacindinuities can be captured within one cell. On the oltfzed,
the type of arithmetic averaging outlined herein can bdydsployed to such systems of conservation laws, whiletiimgithe
dissipation within viscous layers to a satisfyingly low ama

8. Test Cases

The performance of the proposed positivity-preservingavas of the Roe and Yee-Roe schemes compared to the original
methods is now assessed through some numerical experimédms2D, and 3D. Although the flux functions proposed herein
were derived in 1D, they can be extended to multiple dimerssibrough dimensional splitting. That is, the flux derivatlong
each dimension is discretized through a one-dimensioaatstfunction of the convective flux in the respective dirsien,
along with its associated eigenvectors and eigenvaluesaue there exists an infinity of possible eigenvector ggiicable

to the 2D-3D Euler equations, and because the obtainedsolepends on the eigenvectors, it is important to use the sa
set of eigenvectors and eigenvalues as used herein to tem@adlde results shown below. In this paper, the eigenveatuts
eigenvalues are as specified in the Appendix of Ref. [12]abse of their capability to capture waves with high-resotuéven
when utilized in conjunction with discretization stendit&t enforce positivity-preservation. Unless otherwis#idated, the
proposed method does not make use of an entropy correctidatandard form” the flux is found from Eq. (62) with te*
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FIGURE 1. Density obtained with the proposed method at a time of @6the 3D Noh test case; the entropy correction faétisrset to 0.3.
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FIGURE 2. Density obtained with the proposed method at a time of T 2D Sedov test case; the entropy correction fatteset to 0.3.

eigenvalues outlined in Egs. (21) and (22). In “iterativenit, the flux is determined from Eq. (62) with the* eigenvalues
outlined in Egs. (44) and (45). Further, it is emphasized tha arithmetic averaging presented in the previous sedsio
used only for the proposed stencils. For the original (nosijrity-preserving) Roe and Yee-Roe schemes, the Jandatiithe
interface is rather obtained through Roe averaging.

This section is divided in two parts. First, we assess thalitify of the proposed method to preserve the positivityhef
density and pressure for several test cases that are kndvenptarticularly stringent. This is then followed by anotkeries of
test cases to determine whether the positivity-presemnvamignt of the Roe solver proposed herein can capture asasdhe
original scheme some key flow features (such as viscousdaggefaction waves, shockwaves, etc).

11
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8.1. Positivity-Preservation Capability Assessment

One well-known deficiency of the Roe scheme is the incapghidi conserve the positivity of the density in the preserfce o
strong rarefaction waves. Negative densities have beesradsd not only when a vacuum is created within the flow, but als
for relatively mild rarefaction waves. The appearance gfatiee densities is exacerbated when the Roe flux functitmiged
second-order accurate through the Yee TVD limiting proc@gsnow proceed to determine if the positivity-preserviagant

of the Yee-Roe scheme that is proposed in this paper fixepthldem. For this purpose, we here consider two test cases
that are known to present difficulties in maintaining pedyji the Sedov blast wave case and the Noh problem. Becaubke b
problems involve strong shock waves, it was deemed negetssset the entropy correction factbto 0.3 to prevent aphysical
phenomena from occurring.

First consider the particularly stringent 3D Noh problerhjat consists of a gas with a specific heat ratio of 5/3 and a gas
constant of 286 J/kgK with the following initial conditionthe inward radial velocity is set to 1 m/s, the pressure issas
close to zero as possible, and the density is set to 1 kdffectively, this entails initially a flow with an infinite lich number
directed towards the origin. To prevent a singularity, thiidl pressure is not set to zero but ratheid €0¢ Pa. The problem
is here solved on a structured Cartesian mesh composktbdequally-spaced nodes spanning a domaif0df12 m)3. As
the solution progresses in time, the boundary nodes areegbda follows: the pressure and the velocities remain fizabe
initial conditions while the density is updated accordiagfte following exact solution [17, 18]:

1 2

b= (I1+1t/r)* forr>t/3 67)

64 forr <t/3
wherer is in metersy in seconds and the resultipgs in kg/m?. When solving this test case, the Yee-Roe flux function gield
negative densities after a few iterations, even when usarg small time steps several orders of magnitude below the CF
condition. On the other hand, as shown in Fig. 1a, the salytielded by the proposed method is free of negative dessitie
temperatures as long as the time step is set to no more thathiothéhe one yielded by the condition derived in Section 6.2
(it is noted that condition (64) is valid for a 1D system of servation laws; in 2D, the time step needs to be reduced tdjofo
and in 3D, threefold). Further, as shown in Fig. 1b, the méfiroposed herein is seen to match reasonably well the tieadre
solution despite the relatively low number of grid pointedis

A second test case that can lead to some difficulties in prieggthe positivity of the density and pressure is the Sedastb
wave case, which consists of a gas with a specific heat raligt@ind a gas constant 286 J/kgK initially at rest with a density
of 1 kg/m’ and a pressure dfd—¢ Pa. The mesh is constructedi@24> cells of equal width and height spanning a domain of
(2.5 m)2. For one cell at the origin, the pressure is set initialP1®917056 Pa- m? / A, with A, the area of the cell. The
high pressure difference between the cell at the origin tsddighbors induces a strong cylindrical shockwave fadidwy a
rarefaction wave, eventually leading to very low densitiethe center of the domain. As shown in Fig. 2a, the solutieldgd
by the proposed method is free of negative densities or teatyres and displays good agreement with the exact soldtamn
time oft = 1 s, the exact solution yields a shock located at a radius of hdraadensity peak of kg/m® (see Refs. [19, 20]),
which is corroborated by the results with the method progdsgein (see Fig. 2b).

Although not shown here for conciseness, the positivigsprving capability of the proposed method has been further
verified through the 2D Noh problem and the 3D Sedov problemyell as through the stringent 1D, 2D, and 3D test cases
outlined in Ref. [12]. The test cases outlined in the lateference are such that the conventional Roe and Yee-Romeshe
fail to maintain the positivity of the density or the pressueven for time steps well below the CFL condition. Such duss
occur however using the stencils proposed herein: no negddinsities or pressures were observed as long as the gmesst
fixed following the conditions presented in Section 6 above.

8.2. Accuracy Assessment for Flows of Interest

It is emphasized that the present approach achieves ptysfiieservation by modifying both the first-order Roe teramd the
second-order Yee terms as well as the type of averaging attdréace (i.e. arithmetic average instead of Roe averdgeay
be argued that these modifications result in stencils thaiodoetain the appealing features of the original schemestHis
purpose, we now proceed to determine through the simulatiGome key problems if the proposed stencils do perform as
well as the original Roe and Yee-Roe methods with respedgteo tesolution capture of discontinuities, low dissipativithin
viscous layers, and ease of convergence to steady-state.

One appealing attribute of the Yee-Roe flux function is thgatdlity to capture viscous layers while introducing a rmiai
amount of dissipation. It can be verified if the present apphoretains this attribute through the simulation of a lamin

12
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FIGURE 3. Comparison between the proposed method (using aritbmetraging), the Yee-Roe second-order scheme (using Roaging),
and the Steger-Warming flux limited scheme on the basis offskition coefficient at the wall for the boundary layer tease; one node in
two is shown.

boundary layer over a flat plate. The simulation of high-Réga-number laminar boundary layers is especially difficul
because the molecular diffusion taking place within lami@undary layers is often of the same order of magnitudeven e
less) than the aphysical dissipation introduced by the fissrdtization scheme. In fact, several commonly-used flunctions
(such as the Steger-Warming FVS method, or the Jamesondsémarth order artificial dissipation scheme, HLL, etcyoduce
such a large amount of aphysical dissipation that an adolepeatimate for the skin friction can only be obtained if mtran
hundreds or even thousands of grid lines are clusteredmiitiel boundary layer.

To quantify the amount of aphysical dissipation introduegttiin viscous layers, consider air flowing over a flat plaithw
a Mach number of 2, a pressure of 0.1 bar, and a temperatur@0oK3The results are obtained using an orthogonal mesh
which is constructed such that most of the nodes are distabwithin the boundary layer (specifically: 60% of the dridks
are distributed, equally-spaced, within 2 mm of the walh.Hg. 3, a comparison is offered between the proposed $enci
and some conventional second-order Roe and Steger-Waflminfynctions on the basis of the skin friction coefficientla
wall. The Yee-Roe scheme (with Roe averaging at the intejfean be seen to perform admirably well for this problemneve
for the coarsest mesh considered, it yields a solution thassentially grid-converged and that is in near-perfecteagent
with the theoretical prediction (the small discrepancyis tb the analytical solution being inapplicable near theileg edge).
On the other hand, the Steger-Warming scheme introducessive dissipation and yields a skin friction at the wallesal/
orders of magnitude lower than the theoretical predictimen for the finest mesh considered. Although not shown heaged
convergence study indicates that, in order to match thdugso of the Yee-Roe flux function, the Steger-Warming noeth
would require a mesh that is at least 100 times more refinedtheavall. On the other hand, the present approach performs
significantly better than the Steger-Warming scheme, bybétidng a resolution approaching the one of the Yee-Roe otéth
on either coarse or fine meshes, the skin friction coefficgentithin a few percent of the analytical solution over mokt o
the flat plate (see Fig. 3). Several other simulations of temand turbulent flows over flat plates confirm that the presen
approach performs essentially as well as the original Yee4Rethod in capturing either boundary or shear layersgwiging
positivity-preserving and using an arithmetic averag@atmterface.

A second appealing attribute of the Yee-Roe flux functiohédapability to capture discontinuities with “high-ragan”.
High resolution here refers to the property of a method tawrapwith few nodes discontinuous or continuous waves witlte
introducing spurious non-physical oscillations. Roedsbflux functions perform very well in this regard compareatoer
methods. Indeed, compared to the Roe scheme, many othegtdiation stencils are either more dissipative (eg. HLiegsr-
Warming) or introduce more spurious oscillations (eg. Janend-4th order artificial dissipation, AUSM) in the viitynof
contact surfaces or shockwaves. The high-resolution diityadf the Yee-Roe method is due, in part, to the first-or&ere
terms being monotonicity-preserving while introducinghimial dissipation in the vicinity of discontinuities, ard part, to the
second-order Yee terms being total variation diminishirey,(capability to maintain the monotonicity-preservprgperty of
the underlying first-order scheme while reaching secomigtaccuracy in smooth flow regions). Because the presenagp
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FIGURE 4. Comparison between the proposed method (using aritbraetraging) and the Yee-Roe second-order scheme (usinguRoe
aging) for the Riemann problem test case at a time of 0.8 ms.
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FIGURE 5. Comparison between the proposed method (using aritbrmetraging), and the Yee-Roe scheme (using Roe averagint)ef
Mach 2.5 channel flow test case on the basis of the steadyesasity contours (in kg/# obtained using &1 x 61 mesh.

modifies both the first-order Roe terms and the second-ometéfms in order to attain positivity-preservation, itngortant

to quantify the amount of resolution lost due to these madlifims. For this purpose, consider air with a density of Irikg/
initially at rest in a constant-area duct. The air is givetially a pressure of 1 bar far < 0.5 m and a pressure of 0.1 bar for
x > 0.5 m, and the solution is advanced in time through an explicieEalgorithm. As can be seen through the Mach number
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profiles plotted in Fig. 4, the present approach yields atgwiuhat is nearly identical to the one of the original YeeeRlux
function: very little difference can be observed through tiontact surface, and essentially no difference is appéresugh
the shockwave or the expansion fan. Although not shown legreonciseness, several other test cases in 1D, 2D, and 8D yie
a similar conclusion, and confirm that the enforcement oftpdyg-preservation through the rule of the positive digénts
and the replacement of the Roe average by an arithmeticgevei@not diminish significantly the high-resolution capitibs

of the Yee-Roe scheme.

A third appealing attribute of the Yee-Roe scheme is its b#ipato yield a converged solution for a wide variety of
flows. A solution is considered “converged” when the diseest equations on all nodes are solved to an acceptabledével
accuracy. Obtaining a converged solution is trivial wheingian explicit Euler time marching algorithm to solve tiraecurate
cases, because an explicit Euler scheme solves the disdtetfjuations on each node exactly. However, when solvimgy ti
accurate problems through an implicit dual-time steppingtegy or, alternately, when solving steady-state prabléhrough
a pseudotime relaxation procedure, there is no guarang¢¢hid solution yielded by the flow solver is converged, evieer a
a large number of iterations. In certain cases, obtainingrave&rged solution can be problematic because of conveegenc
hangs originating from the limited second-order terms. @arad to alternative approaches (especially other TVDraelsg
the Yee-Roe method fares well in this regard and offers gavdergence behavior for various types of flows. To verify if
the positivity-preserving variant of the Yee-Roe schen@ppsed herein exhibits as good convergence characterégithe
original method, various types of steady-state probleras baen investigated: in all cases, not only did the preggprioach
converge as well as the original scheme, but little or noetisible differences could be found in the obtained solutibar
instance, consider a steady inviscid supersonic flow ovaaagie in a channel with a Mach number of 2.5, a temperatfire o
300 K, and a pressure of 0.1 bar. Through an iterative psendedtepping relaxation process, the residual of the elised
equations on all nodes is minimized sufficiently that a coged solution is obtained. As can be seen through the stetadly-
density contours in Fig. 5, the present approach yields atisal that is essentially identical to the one of the Yee-Roe
function with no apparent discrepancy within either theckiscor expansion fans.

9. Conclusions

A new positivity-preserving variant of the Roe flux diffemnsplitting scheme is obtained by modifying the Roe flux fiomc
such that the associated discretization equation conféontise rule of the positive coefficients. To satisfy the rufette
positive coefficients, all the coefficients within the ditization equation should have positive eigenvalues awd thee same
eigenvectors as those of the flux Jacobian. Because the paiidifi does not alter the Roe wave speeds at the interface
(the amount of wave speed lost by the right node is gained &Yetih node, and vice-versa), the modified stencils retagn th
favorable features of the original method such as highluéisa capture of discontinuities and of viscous layerse pbsitivity-
preserving variant of the Roe scheme is extended to secalet-accuracy through the Yee centered TVD limiters apgied
the characteristic variables. To ensure that the secotelrdux function is positivity-preserving, the Yee limigirprocess is
altered such that it results in a discretization equatia@yoty the rule of the positive coefficients. Several tesesasdicate that
the extra amount of dissipation necessary to ensure pibsipiveservation is typically negligible, and only becarsignificant
when the original method introduces negative densities@mgeratures.

By imposing the rule of the positive coefficients on the disization coefficient in which the time step appears, a itsit
preserving condition on the time step applicable to fluxedéhce splitting schemes is derived. The so-obtained ttee s
condition is shown to revert to the CFL condition in regiorisuniform properties, but to depart from the latter in region
with appreciable property gradients. This is confirmedulgiovarious numerical experiments: near contact discoitigs or
shock waves, the time step needed to ensure positivity wagsen of flux difference splitting schemes can differ byader
of magnitude or more from the one obtained from the CFL caorlit

In order to prevent the Mach number from reaching excesshigh values in vacuums, it is found necessary to replace the
Roe average by a type of arithmetic averaging at the interfacso-doing, the scheme can not capture a contact disciyti
exactly within one cell. However, numerous test cases atdithat this is not a cause for concern: the replacement ef Ro
averaging by arithmetic averaging is found to have nedkgiimpact on the solution except near the leading edge of-high
Reynolds-number laminar boundary layers. Even in suclonsgithe dissipation introduced by the arithmetic average i
minimal, and the shear stress and boundary layer heightase t those obtained with the Roe average. Other thanmtiege
the Mach number from reaching too-high values within vacsiuanithmetic averaging is advantaged by being straigivtoot
to extend to arbitrary systems of conservation laws.

Compared to previous positivity-preserving variants efffoe scheme, the proposed method is noteworthy by beirtgmvrit
in general matrix form. That s, the flux function dependgbkobn the vector of conserved variables, the convectivefactor,
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and the convective flux Jacobian and its associated eigemgeand eigenvalues. Therefore, the present method cem 10t
only the 1D Euler equations, but can be readily deployed bherosystems of conservation laws such as the 2D-3D Euler
equations in generalized coordinates (as done herein Veraletest cases). Positivity-preservation is guarangselbng as

the system of conservation laws adheres to the rule of thitiyeosoefficients. Although the proof of the rule of the pog
coefficients is limited to the perfect-gas Euler equatiaswmne preliminary theoretical analysis and numerical arpamts
suggest that it may also be applicable to other fluid flow goivey equations, including real gas effects, transport oftipia
species densities, transport of turbulence kinetic enetgy Further study is nonetheless required to substaritiase claims,
and to confirm whether the flux difference splitting schemes@nted herein remain positivity-preserving for moreéate
sets of governing equations.

A. Derivation of Positivity-Preserving Range on Limiter Function

The positivity-preserving limits on the limiter functionehere derived for the Yee-Roe flux. This can be accompliblpduist
substituting the Yee-Roe flux function, Eg. (55), into theadéte equation, Eq. (12):

Ax _ I 1 _ | S _ _
A_Z(U;ZH - Ui) = _Li ]A:'JrLiUi - Li41-1Ai+1Li+1Ui+1 - ELi 1‘11;:-1/2(Git—1 - G:Jr) + ELi-',]-l‘Iji+l/2(Gi+l - Gi )
1 1
+ L7 'AF Lo Uiy + L7'AT LU + EL;jl\If,.t,/z(G;“ -Gt - ELFI‘Pf—l/z(Gi_ -G)
(A.1)
Then, following the approach outlined in Ref. [12], thedattan also be written as:
CinJrlUinJrl — CiUi + Ci+l Ui+1 + Cifl Ui*l (A2)
In order for the latter to be equal to the former, the diseedidn coefficients must be defined as:
Ax
c/t' = El (A.3)
Ax et Loy + + ie-_ Lo - _ G-
GU; = A_tIUi - Li Gi - ELi qji+1/2(Gi+1 - Gi )+ Li Gi - EL:' \Iji—l/2(Gi - Gi—l) (A-4)
1
Ci—lU[—l = +Lz_711G1-t1 + ELz_fllqjltl/Z(Gz_'_ - Gz_tl) (A5)
1 e | _ _
CinU = _LiJ:IGiJrI + _Liil\piJrl/Z(GiJrl —-G; ) (A.6)

2

According to the rule of the positive coefficients, a disization stencil is positivity-preserving if all the coefiats are posi-
tive, with a positive coefficient having all-positive eigatues and having the same eigenvectors as those of the dokiaa.
It can be readily seen that the coefficignt™' satisfies these requirements. Further, the coeffigiettecomes positive for a
small-enough time step. However, such is not the case footther two coefficients. Let us now determine the conditioms o
the limiters matriced’® that ensure that the coefficier@s_, andC;.., are positive.

For the coefficienC; ., to be positive, it must have the same eigenvectors as thdbke @tix Jacobian and have all-positive
eigenvalues. Then, it follows that Eq. (A.6) must corresptn

_ PR | _ _
Li—ilDi-:-lLi-HUi-i-l = _L[-il-lGi+l + ELH{I\IJI'+1/2(G1'+1 - Gi ) (A-7)

with D}, | denoting a diagonal matrix with positive diagonal elemeMsiltiply all terms by2L;,, and express the terms in
tensor form:

2[Di ], ILisiUin], = =2[G, ], + [‘I’,-_Jrl/z],,, [G], - [\Iji_+l/2]r,r [G7], (A.8)
Multiply all terms by[ A7, ,] . and divide through byG; ] :

G-
2 [Ditrl]m- =2 [Ai_+1]m- + [Ai_+1]r,r [\yi_+1/2]r,r - [Ai_+1]r,r [‘Iji_+1/2]r,r [[(;+]]r (A.9)
i+1]

For the stencil to be positivity-preserving, all diagonleiheents of the matri*D,tr]]” must be positive. Then it follows that
the following condition must hold:

—
Q
|_||
3

2[Ara], A, el — (A, [95e],, —[Gi 70 (A.10)
i+1
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Divide through by{A7, ], . and rearrange:

i+1
[G5.], —[67]
g Lrirtdy L7ildr 9 (A.11)
[ +]/2]r.r [Gi_+1]r
To obtain the latter, it is noted that we dividedt ,.+l]r .» Which is either negative or zero when using the positiyitgserving

variant outlined in Eqg. (21) or in Eq. (45). A division by zerould be avoided by redefining the negative eigenvalues such
that they never exceed a negative number of small magnitddeiever, such is not deemed necessary because the potential
division by zero only appears in an interim equation and nehé final flux function.

If the LHS of (A.11) is negative, the condition is guarantéete satisfied. Therefore, we can take the absolute valde=of t
terms on the LHS without losing generality:

_ (G, - [67]
U], — = <2 (A.12)
[¥52] ' [Gi+1]r
Further, it can be easily shown that condition (A.12) yidhus following bounds on the limiter functio—:
210G 210G
B S (e M <[V,.] . < _ 2065, (A.13)
[Gi_+l]r —[G], " [Gi_+1], -G/,

Having found the conditions on the limiter functioki that yield a positivity-preserving stencil, proceed toedstine the
conditions on the limiter functio@*. This can be accomplished starting from Eq. (A.5) and foifmthe same steps as above.

The following is thus obtained:
[Gitl]r — [G'Jr]r

(v, () el o9 (A.14)
The latter yields the following bounds on the limiter fuctiv+:
2[G6L1] 2[G6L1]
[ P "t bt gt L=y A.15
<Ml <|GE] 6T (A9

(6], - [67],
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