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Positivity-Preserving Flux Difference Splitting Schemes

Bernard Parent�

A positivity-preserving variant of the Roe flux difference splitting method is here proposed.
Positivity-preservation is attained by modifying the Roe scheme such that the coefficients of the
discretization equation become positive, with a coefficient considered positive if all its eigen-
values are positive and if its eigenvectors correspond to those of the flux Jacobian. Because
the modification does not alter the wave speeds at the interface, the appealing attributes of the
Roe flux difference splitting schemes are retained, such as high-resolution capture of discontin-
uous waves, low amount of artificial dissipation within viscous layers, and ease of convergence
to steady-state. The proposed flux function is advantaged over previous positivity-preserving
variants of the Roe method by being written in general matrixform and hence by being readily
deployable to arbitrary systems of conservation laws. The stencils are extended to second-order
accuracy through a newly-derived positivity-preserving total-variation-diminishing limiting pro-
cess that is applied to the characteristic variables and that yields positive coefficients. Also de-
rived is a positivity-preserving restriction on the time step for flux difference splitting schemes
that is shown to depart significantly from the CFL condition in regions with high property gra-
dients.

1. Introduction

O RIGINALLY published more than three decades ago, the Roe fluxdifference splitting scheme [1, 2] remains today one
of the most used methods to discretize the convection derivatives within fluid flow systems of conservation laws. The

lasting popularity of the Roe scheme lies in it having the following three properties: (i) it is monotonicity-preserving, (ii) it
introduces minimal dissipation within viscous layers and discontinuities, and (iii), it is written in general matrix form. Indeed,
when arithmetic averaging instead of Roe averaging is used to determine the Jacobian at the interface, the Roe flux is written in
general matrix form because it is function only of the flux vector, of the vector of conserved variables, and of the eigenvalues
and eigenvectors of the flux Jacobian. This makes it possibleto deploy the Roe scheme, without modification, to arbitrary
systems of conservation laws. Other commonly-used flux discretization approaches may have one or two of the properties just
listed, but not all three. For instance, the Godunov exact Riemann solver [3], the HLLC approximate Riemann solver [4], and
the AUSM method [5] are not written in general matrix form, while the Steger-Warming flux vector splitting method [6] and
the HLL approximate Riemann solver [7] suffer from excessive dissipation within viscous layers.

The Roe scheme has nonetheless one major disadvantage over competing methods: it is not positivity-preserving. Positivity-
preservation refers to the capability of a discretization stencil to maintain the positivity of the determinative properties, with the
latter being the properties that must be positive for the solution to be physically-permissible. For instance, the determinative
properties associated with the Euler equations are the density and the temperature; the determinative properties associated
with the multispecies Favre-averaged Navier-Stokes equations would further include the partial densities, the turbulence kinetic
energy, and its dissipation rate. The Roe scheme is well-known not to maintain the positivity of the determinative properties,
with the effect that negative densities, temperatures or turbulence kinetic energies appear occasionally in the solution. This
can be remedied through a “clipping” of the determinative properties after each iteration to ensure that they remain physically
meaningful. But such is an undesirable fix because, when solving time-accurate cases, this leads to a loss of conservation which
can induce substantial error within the solution, and when solving steady-state cases, this further leads to convergence issues
often preventing a converged solution altogether.

Despite the considerable interest over the years to developa positivity-preserving variant of the Roe flux function, limited
success has been reported to date. For instance, in Ref. [8],Einfeldt et al show that a modification of the averaging process at
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the interfaces cannot lead to positivity-preservation. That is, it is not possible to make the Roe scheme positivity-preserving
by substituting the Roe average by an arithmetic average or any other type of averaging process. More success is reportedin
Refs. [9, 10], in which Dubroca proposes a new family of Roe matrices: the eigenvectors and eigenvalues are not obtained
from the convective flux Jacobian as is usually done, but rather from a matrix that is as close as possible to the flux Jacobian
while resulting in a positivity-preserving discretization stencil. However, the approach proposed by Dubroca is limited to the
one-dimensional Euler equations and it is not clear how it can be extended to the Euler equations in multiple dimensions,let
alone to other systems of conservation laws including the transport equations of nitrogen vibrational energy, turbulence kinetic
energy, partial densities, etc.

Meanwhile, some progress in positivity-preserving theoryfor fluid flow systems of conservation laws has been reported
that is of particular interest. In Ref. [11], a new approach named the “rule of the positive coefficients” is proposed to craft
positivity-preserving discretization stencils. Using the rule of the positive coefficients, Parent derives in Ref. [12] a new set of
total-variation-diminishing (TVD) limiters which are advantaged over the conventional limiters by being positivity-preserving.
The positivity-preserving TVD stencils proposed by Parentare particularly appealing for two reasons: (i) they do not introduce
more dissipation than the conventional TVD stencils, and (ii) they are written in general matrix form. That is, the stencils
depend solely on the vector of conserved variables and on theflux Jacobian and can hence be readily deployed to any system of
conservation laws. However, because the method is a second-order extension of the Steger-Warming scheme, it suffers from the
same limitations as the latter and hence introduces excessive dissipation within viscous layers compared to Roe flux functions.

The goal of this paper is to use the rule of the positive coefficients to craft a novel variant of the Roe flux function that is
positivity-preserving and that is written in general matrix form (i.e. only function of the flux vector, of the vector of conserved
variables, and of the flux Jacobian). The proposed method is hence advantaged over previous positivity-preserving variants of
the Roe method by being readily extendable to any system of conservation laws, and is advantaged over previous positivity-
preserving Steger-Warming schemes by being capable to capture viscous layers with high resolution.

This paper is organized as follows. First, an outline is given of the rule of the positive coefficients including its possible
limitations. Then, the Roe scheme is recast in a form similarto the Steger-Warming flux vector splitting method in order to
ease the task of attaining positivity-preserving stencils. This is followed by the outline of novel positivity-preserving variants of
the Roe flux functions written in general matrix form, and of anovel positivity-preserving condition on the time step applicable
to flux difference splitting schemes. Lastly, several test cases solving the Euler equations and the Navier-Stokes equations are
presented to assess the positivity-preserving and resolution capabilities of the proposed stencils compared to the conventional
Roe methods.

2. Rule of the Positive Coefficients

The rule of the positive coefficients can be summarized as follows. Consider a discretization equation updating the vector of
conserved variablesU at thei th node as follows:

C nC1

i
U nC1

i
D CiUi C CiC1UiC1 C Ci�1Ui�1 C ::: (1)

wherei is the grid index,n the iteration count, and whereCi , CiC1, etc are the discretization coefficients (in matrix form). In
Ref. [11], it is demonstrated that a discretization stencilmaintains the positivity of the determinative properties as long as all
the coefficients within the discretization equation are positive. A “determinative property” here refers to a propertythat must
necessarily be positive to be physically meaningful (such as the pressure, the density, etc), and a “positive coefficient” refers to
a coefficient with all-positive eigenvalues and with the same eigenvectors as those of the respective flux Jacobian:

Ci D L�1

i
DC

i
Li ; Ci�1 D L�1

i�1
DC

i�1
Li�1 ; CiC1 D L�1

iC1
DC

iC1
LiC1 ; ::: (2)

whereL andL�1 correspond to the left and right eigenvectors of the flux Jacobian andDC to a diagonal matrix with all-positive
diagonal elements. Although the proof presented in Ref. [11] is limited to the perfect-gas Euler equations, there are indications
that the rule of the positive coefficients remains valid for other physical models. For instance, when solving a mixture of gases,
the eigenvectors and eigenvalues associated with the additional species conservation equations have a similar form asthose
associated with the total mass conservation equation. Then, following the same steps as in the Appendix of Ref. [11], it can
be shown that the positivity of each species density is conserved as long as the coefficients within the discretization equation
are all positive. Similar arguments can also be made for the additional transport equations related to turbulence modeling:
when a two-equation turbulence model is solved in conjunction with the mass, momentum, and energy transport equations,the
turbulence kinetic energy and its dissipation rate can be shown to remain positive should the rule of the positive coefficients
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be enforced. What is more challenging to demonstrate, however, is whether the internal energy (and hence, the pressure and
temperature) would remain positive when the system of conservation laws include these additional transport equationsand/or
when the gas is non perfect. The most that can be stated at thisstage is that no negative pressures and temperatures were
encountered in doing numerous numerical experiments of a real multispecies gas including a two-equation turbulence model
as long as the discretization equation obeyed the rule of thepositive coefficients. While this does not constitute a proof, it does
shed hope that the rule of the positive coefficients is not limited to the perfect-gas Euler equations but also applies to other sets
of equations commonly encountered in fluid mechanics, and perhaps even in plasmadynamics.

3. Recast of Flux Difference Splitting Schemes in Flux Vector Splitting Form

The first-order Roe flux difference splitting schemes is hererewritten (without loss of generality) in a form similar to the
Steger-Warming flux vector splitting methods. The reason for this will become apparent in subsequent sections when some
positivity-preserving variants of the Roe flux functions are derived. To do so, first note that the Roe flux difference splitting
scheme yields a flux at the interface of the form [1]:

FiC1=2 D
1

2
Fi C

1

2
FiC1 �

1

2
jAjiC1=2.UiC1 � Ui/ (3)

whereF is the convective flux,U the vector of conserved variables, andjAj the Roe matrix equivalent to:

jAj � L�1jƒjL (4)

whereL is the left eigenvector matrix,L�1 is the right eigenvector matrix,ƒ is the eigenvalue matrix of the convective flux
JacobianA � @F=@U , andjƒj is the absolute value of the eigenvalue matrix obtained fromƒ by taking the absolute value of
all elements. To ensure that the scheme does not induce non-physical phenomena, it is necessary to correct the eigenvalues part
of the matrixjAj as follows:

jƒjr;r !
q

jƒj2
r;r

C ıa2 (5)

with a the speed of sound andı a user-defined parameter. Then recast Eq. (3) in Steger-Warming flux vector splitting form as
follows:

FiC1=2 D L�1

i
ƒC

i
Li Ui C L�1

iC1
ƒ�

iC1
LiC1UiC1 (6)

whereƒ˙
i

are diagonal matrices that will be determined below. It is noted that because the eigenvectors are obtained from
the JacobianA which is defined asA � @F=@U , it follows that Eq. (6) necessarily implies that the set of equations must be
homogenous of degree 1. But this is not a particular source ofconcern: not only do the perfect-gas Euler equations have this
property, but so do various other sets of equations used to solve compressible fluid flow (such as the multi-species real-gas
Euler equations, the Favre-averaged Navier-Stokes equations, etc). Further, should the set of equations not be homogeneous of
degree 1, the methods developed herein can still be used provided the matrixA is redefined such thatAU � F .

By imposing the condition that the flux in Steger-Warming form outlined in Eq. (6) must be equal to the flux in Roe form
outlined in Eq. (3), it is apparent that the following two equalities must hold:

L�1

i
ƒC

i
Li Ui D

1

2
Fi C

1

2
jAjiC1=2Ui (7)

L�1

iC1
ƒ�

iC1
LiC1UiC1 D

1

2
FiC1 �

1

2
jAjiC1=2UiC1 (8)

The latter essentially consist of the definitions of the diagonal matricesƒ˙. Then, note that for a system of conservation laws
that is homogeneous of degree one, the convective flux can be written asFi D Ai Ui D L�1

i
ƒi Li Ui . After making the latter

substitution and multiplying all terms in Eq. (7) byLi , the following is obtained:

ƒC

i
Li Ui D

1

2
ƒiLi Ui C

1

2
Li jAjiC1=2Ui (9)

Rewrite the latter in tensor form and divide all terms byŒLi Ui �r :

�

ƒC

i

�

r;r
D

1

2
Œƒi �r;r C

1

2

ŒLi jAjiC1=2Ui �r

ŒLi Ui �r

(10)
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Starting from Eq. (8) and following a similar procedure as outlined above, an expression forƒ� can be found:

�

ƒ�

iC1

�

r;r
D

1

2
ŒƒiC1�r;r �

1

2

ŒLiC1jAjiC1=2UiC1�
r

ŒLiC1UiC1�r

(11)

In the latter 2 equations, the last term on the RHS can be seen to involve a division by the characteristic variablesŒLi Ui �r . It
may be argued that this could lead to a division by zero in solving the Euler equations in multiple dimensions. This is not a
cause for concern, however, because there exists a set of eigenvectors and eigenvalues for the 2D and 3D Euler equations that
is such that the characteristic variables never become zero(see the Appendix of Ref. [12] for instance).

It is emphasized that, thus far, the Roe scheme has not been modified, but has simply been recast in a different form, similar
to the one used to express the Steger-Warming flux vector splitting method. Indeed, by substituting Eqs. (10) and (11) into Eq.
(6), one would obtain exactly the Roe scheme.

4. Proposed Positivity-Preserving Flux Difference Splitting Schemes

Some novel first-order flux functions are now proposed that retain the appealing features of the Roe scheme while being
positivity-preserving. The schemes are derived for a 1D hyperbolic system of conservation laws, which can be written in
discrete form as:

U nC1

i � Ui

�t
C

FiC1=2 � Fi�1=2

�x
D 0 (12)

whereU is the vector of conserved variables,F is the convective flux,n denotes the time level, andi is the grid index alongx.
Although the schemes are here derived in 1D, they can be extended to 2D and 3D through dimensional splitting while remaining
positivity-preserving.

The first-order Roe scheme can be made positivity-preserving by modifying the eigenvaluesƒ˙ outlined above in Eqs.
(10)-(11) such that the discretization equation conforms to the rule of the positive coefficients. To determine the conditions
on ƒ˙ that result in the discretization equation satisfying the rule of the positive coefficients, first substitute the interface flux
outlined in Eq. (6) into the discrete equation (12). This yields:

U nC1

i � Ui

�t
C

L�1

i
ƒC

i Li Ui C L�1

iC1
ƒ�

iC1
LiC1UiC1

�x
�

L�1

i�1
ƒC

i�1Li�1Ui�1 C L�1

i
ƒ�

i
Li Ui

�x
D 0 (13)

The latter can then be rewritten in standard discretizationequation form as follows:

C nC1

i
U nC1

i
D Ci�1Ui�1 C CiUi C CiC1UiC1 (14)

with the discretization coefficients defined as:

C nC1

i
�

�x

�t
L�1

i
ILi (15)

Ci � L�1

i

�
�x

�t
I � ƒC

i
C ƒ�

i

�

Li (16)

Ci�1 � L�1

i�1
ƒC

i�1
Li�1 (17)

CiC1 � �L�1

iC1
ƒ�

iC1
LiC1 (18)

According to the rule of the positive coefficients, a discretization stencil is positivity-preserving if all the coefficients are positive
[11]. For a coefficient to be considered positive, two conditions must be fulfilled. First, its eigenvectors must correspond to
those of the convective flux Jacobian evaluated at the corresponding node. This can be verified to be the case for all the above
coefficients. Second, its eigenvalues must all be positive.This is always true for the coefficientC nC1

i , and can become true for
the coefficientCi should the time step be sufficiently small. The other two coefficients,Ci�1 andCiC1, are guaranteed to be
positive only if all the diagonal elements within the matrixƒC are positive and if all the diagonal elements within the matrix
ƒ� are negative. Unfortunately, this is not the case for the Roescheme. Indeed, theƒC andƒ� matrices associated with the
Roe flux function (as derived in the previous section) may notyield positive coefficients. This becomes clear when Eqs. (10)
and (11) are rewritten as:

�

ƒ�

iC1

�Roe

r;r
D min

�

0;
1

2
ŒƒiC1�

r;r
�

1

2

ŒLiC1jAjiC1=2UiC1�
r

ŒLiC1UiC1�
r

�

„ ƒ‚ …

positivity-preserving

C max

�

0;
1

2
ŒƒiC1�

r;r
�

1

2

ŒLiC1jAjiC1=2UiC1�
r

ŒLiC1UiC1�
r

�

„ ƒ‚ …

not necessarily positivity-preserving

(19)
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�

ƒC

i

�Roe

r;r
D max

�

0;
1

2
Œƒi �r;r C

1

2

ŒLi jAjiC1=2Ui �r

ŒLi Ui �r

�

„ ƒ‚ …

positivity-preserving

C min

�

0;
1

2
Œƒi �r;r C

1

2

ŒLi jAjiC1=2Ui �r

ŒLi Ui �r

�

„ ƒ‚ …

not necessarily positivity-preserving

(20)

Clearly, the last term on the RHS of the latter two equations may result inƒ˙ matrices that may not conform to the rule of
the positive coefficients. To make the Roe scheme positivity-preserving theƒC eigenvalues presented in Eq. (20) must be
modified to be always positive, and theƒ� eigenvalues presented in Eq. (19) must be modified to be always negative. Then,
the coefficients of the discretization equation would respect the rule of the positive coefficients, and the scheme wouldbecome
positivity-preserving. One way this can be accomplished isby moving the negative terms fromƒC to ƒ� and by moving the
positive terms fromƒ� to ƒC:

�

ƒ�
iC1

�

r;r
D min

�

0;
1

2
ŒƒiC1�

r;r
�

1

2

ŒLiC1jAjiC1=2UiC1�
r

ŒLiC1UiC1�
r

�

„ ƒ‚ …

positivity-preserving

C min

�

0;
1

2
Œƒi �r;r C

1

2

ŒLi jAjiC1=2Ui �r

ŒLi Ui �r

�

„ ƒ‚ …

positivity-preserving

(21)

�

ƒC
i

�

r;r
D max

�

0;
1

2
Œƒi �r;r C

1

2

ŒLi jAjiC1=2Ui �r

ŒLi Ui �r

�

„ ƒ‚ …

positivity-preserving

C max

�

0;
1

2
ŒƒiC1�

r;r
�

1

2

ŒLiC1jAjiC1=2UiC1�
r

ŒLiC1UiC1�r

�

„ ƒ‚ …

positivity-preserving

(22)

The approach proposed here has the advantage of not alteringthe Roe wave speed at the interface: the amount of wave speed
lost on the left node corresponds to the amount of wave speed gained on the right node and vice versa.

A positivity-preserving variant of the Roe scheme can hencebe obtained by substituting the latterƒC andƒ� eigenvalues
in the flux at the interface outlined in Eq. (6):

FiC1=2 D L�1

i
GC

i
C L�1

iC1
G�

iC1
(23)

with G˙ � ƒ˙LU . As will be shown in Section 8 below through some test cases, the latter flux function yields results that are
very close to those obtained with the conventional Roe method within shocks, expansion fans, and contact discontinuities, but
introduces slightly more dissipation within high-Reynolds-number laminar viscous layers.

4.1. Iterative Form

To reduce the dissipation within viscous layers, an alternative approach is here proposed to determine the positive andnegative
eigenvalues that result in a closer agreement with the original Roe method, albeit at the expense of algorithm complexity. This
is accomplished by first substituting the positive and negative eigenvalues outlined in Eqs. (10) and (11) into the Roe flux at the
interface Eq. (6). After some reformatting, the following is obtained:

F Roe
iC1=2

D L�1

i
Y C

i
Li Ui C L�1

iC1
Z�

iC1
LiC1UiC1

„ ƒ‚ …

positivity-preserving

C L�1

i
Y �

i
Li Ui C L�1

iC1
ZC

iC1
LiC1UiC1

„ ƒ‚ …

not necessarily positivity-preserving

(24)

with the diagonal matricesY ˙ andZ˙ set equal to:

�

Y �

i

�

r;r
D min

�

0;
1

2
Œƒi �r;r C

1

2

ŒLi jAjiC1=2Ui �r

ŒLi Ui �r

�

(25)

�

Z�

iC1

�

r;r
D min

�

0;
1

2
ŒƒiC1�

r;r
�

1

2

ŒLiC1jAjiC1=2UiC1�
r

ŒLiC1UiC1�
r

�

(26)

�

Y C

i

�

r;r
D max

�

0;
1

2
Œƒi �r;r C

1

2

ŒLi jAjiC1=2Ui �r

ŒLi Ui �r

�

(27)

�

ZC
iC1

�

r;r
D max

�

0;
1

2
ŒƒiC1�r;r �

1

2

ŒLiC1jAjiC1=2UiC1�
r

ŒLiC1UiC1�r

�

(28)

Thus far, the Roe scheme has not been modified. But the terms that are positivity-preserving have been separated from those that
are not necessarily positivity-preserving. Indeed, the first two terms on the RHS of Eq. (24) are positivity-preservingbecause
they result in discretization coefficients that are positive (i.e., with positive eigenvalues and the same eigenvectors as those of
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the flux Jacobian) or that can become positive for a small enough time step. On the other hand, the last two terms on the RHS
of Eq. (24) are not positivity-preserving because they may result in one or more of the discretization coefficients having one or
more negative eigenvalues.

It follows that one way that the stencil could be made positivity-preserving is simply by dropping the last two terms on the
RHS of Eq. (24). But, by doing so, the Roe scheme would be modified substantially and some of its desirable attributes may
be lost in the process. For this reason, instead of discarding the two terms that are not necessarily positivity-preserving, let
us recast them into new terms, some of which being guaranteedto be positivity-preserving. This can be accomplished by first
defining the diagonal matricesR andS such that the following two statements hold:

L�1

iC1
RiC1LiC1UiC1 � L�1

i
Y �

i
Li Ui (29)

L�1

i
Si Li Ui � L�1

iC1
ZC

iC1
LiC1UiC1 (30)

Then, using the latter two definitions, the flux at the interface, Eq. (24), can be rewritten as:

F Roe
iC1=2

D CL�1

i
.Y C

i
C Si /Li Ui C L�1

iC1
.Z�

iC1
C RiC1/LiC1UiC1 (31)

where the matricesR andS can be obtained in terms of the other matrices by multiplyingboth sides of Eqs. (29) and (30) by
LiC1, writing in tensor form, and then isolatingR andS :

ŒRiC1�
r;r

D

�

LiC1L�1

i
Y �

i
Li Ui

�

r

ŒLiC1UiC1�
r

(32)

ŒSi �r;r D

�

Li L
�1

iC1
ZC

iC1LiC1UiC1

�

r

ŒLi Ui �r

(33)

Now, let us split again the terms within the Roe flux in terms ofpositivity-preserving fluxes and not-necessarily-positivity-
preserving fluxes. This can be done by rewriting Eq. (31) as:

F Roe
iC1=2

D L�1

i
.Y C

i
/mC1Li Ui C L�1

iC1
.Z�

iC1
/mC1LiC1UiC1

„ ƒ‚ …

positivity-preserving

C L�1

i
.Y �

i
/mC1Li Ui C L�1

iC1
.ZC

iC1
/mC1LiC1UiC1

„ ƒ‚ …

not necessarily positivity-preserving

(34)

where the superscriptm is an iteration counter such that.�/mC1 refers to an update of the properties.�/. Then, for Eq. (34) to be
equal to the Roe flux at the interface, Eq. (31), the updatedY ˙ andZ˙ diagonal matrices must be equal to:

�

Y �

i

�mC1

r;r
D min

�

0;
�

Y C

i

�m

r;r
C ŒSi �

m

r;r

�

(35)

�

Z�

iC1

�mC1

r;r
D min

�

0;
�

Z�

iC1

�m

r;r
C ŒRiC1�

m

r;r

�

(36)

�

Y C
i

�mC1

r;r
D max

�

0;
�

Y C
i

�m

r;r
C ŒSi �

m

r;r

�

(37)

�

ZC

iC1

�mC1

r;r
D max

�

0;
�

Z�

iC1

�m

r;r
C ŒRiC1�

m

r;r

�

(38)

where the notation.�/m denotes the property.�/ at the previous iteration count. Then, after substitutingR andS from Eq. (32)
and (33) the latter 4 equations become:

�

Y �

i

�mC1

r;r
D min

 

0;
�

Y C

i

�m

r;r
C

�

Li L
�1

iC1
.ZC

iC1/mLiC1UiC1

�

r

ŒLi Ui �r

!

(39)

�

Z�

iC1

�mC1

r;r
D min

 

0;
�

Z�

iC1

�m

r;r
C

�

LiC1L�1

i
.Y �

i
/mLi Ui

�

r

ŒLiC1UiC1�
r

!

(40)

�

Y C

i

�mC1

r;r
D max

 

0;
�

Y C

i

�m

r;r
C

�

Li L
�1

iC1
.ZC

iC1/mLiC1UiC1

�

r

ŒLi Ui �r

!

(41)

�

ZC

iC1

�mC1

r;r
D max

 

0;
�

Z�

iC1

�m

r;r
C

�

LiC1L�1

i
.Y �

i
/mLi Ui

�

r

ŒLiC1UiC1�r

!

(42)
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By performing several iterationsm D 1; 2; 3; ::, the latter set of equations essentially transforms (as much as possible) the
not-necessarily-positivity-preserving terms into positivity-preserving terms (see Eq. (34)). However, it is notedthat when used
in conjunction with Eq. (34), the latter expressions forY ˙ andZ˙ will yield exactly the Roe scheme independently of how
many times the matricesY ˙ andZ˙ are updated. To make the scheme positivity-preserving, rewrite the flux at the interface,
Eq. (34), as:

FiC1=2 D L�1

i
ƒC

i
Li Ui C L�1

iC1
ƒ�

iC1
LiC1UiC1 (43)

with the positive eigenvaluesƒC being set to the sum of the positive wave speeds from both the left and right nodes:

ƒC

i
D Y C

i
C ZC

iC1
(44)

and with the negative eigenvaluesƒ� defined as the sum of the negative wave speeds originating from both the left and right
nodes:

ƒ�
iC1

D Z�
iC1

C Y �
i

(45)

Compared to the original Roe scheme, the latter flux functiondoes not modify the wave speed at the interface: the wave speed
lost by the right node is gained by the left node and vice-versa. Because of this, it retains the desirable attributes of the original
method such as low dissipation within viscous layers, high resolution in the vicinity of discontinuities, and ease of convergence
to steady-state.

In summary, the “iterative form” of the positivity-preserving Roe scheme presented in this section consists of (i) initializing
theY ˙ andZ˙ diagonal matrices using Eqs. (25) to (28), (ii) updating theY ˙ andZ˙ diagonal matrices through an iterative
process by using Eqs. (39) to (42), (iii) determining the positive and negative eigenvalues through Eqs. (44) and (45) using the
latest updates of theY ˙ andZ˙ matrices, and (iv) determining the flux at the interface as inEq. (43). It is here recommended
to update theY ˙ andZ˙ matrices only two times, as further updating the latter matrices seldomly results in a noticeable
improvement of the solution while requiring more computingeffort.

5. Positivity-Preserving Second-Order FDS Flux Functions

One way the Roe scheme can be extended to second-order accuracy while remaining monotonicity-preserving is through theuse
of TVD limiters applied to the characteristic variables as proposed by Yee [13, 14, 15]. Commonly denoted as the “Yee-Roe”
scheme, such a strategy has enjoyed considerable popularity in solving compressible viscous flows because it is second-order
accurate and, like the first-order Roe scheme, it introduceslittle dissipation in viscous layers, it is monotonicity-preserving, and
it converges reliably for a wide variety of flow conditions.

The Yee-Roe flux at the interface can be written as follows:

FiC1=2 D
1

2
Fi C

1

2
FiC1 �

1

2
L�1

iC1=2
jƒjiC1=2MiC1=2

„ ƒ‚ …

first-order Roe terms

C
1

2
L�1

iC1=2
jƒjiC1=2ˆiC1=2MiC1=2

„ ƒ‚ …

second-order Yee terms

(46)

where the vectorMiC1=2 is defined as:
MiC1=2 � LiC1=2.UiC1 � Ui/ (47)

and where the diagonal elements within the limiter matrix are set as follows:

ŒˆiC1=2�
r;r

D
minmod.ŒMi�1=2�

r
; ŒMiC1=2�

r
; ŒMiC3=2�

r
/

ŒMiC1=2�
r

(48)

where the minmod function returns the argument with the smallest magnitude if the arguments all share the same sign and zero if
the arguments are of mixed signs. A possible division by zeroon the RHS of Eq. (48) can be avoided by adding a small constant
to the denominator, as is common practice when implementingthe Yee-Roe scheme. This does not pose problems when doing
computations because the minmod function on the numerator will always be as low in magnitude as the denominator, hence
keeping the limiter function bounded.

As was shown above, the first-order Roe terms can be recast in flux vector splitting form with the positive and negative
eigenvalue matricesƒ˙ as outlined in Eqs. (10) and (11). Without loss of generality, Eq. (46) can hence be rewritten in
flux-vector splitting form as:

FiC1=2 D L�1

i
ƒC

i
Li Ui C L�1

iC1
ƒ�

iC1
LiC1UiC1 C

1

2
L�1

iC1=2
jƒjiC1=2ˆiC1=2MiC1=2 (49)
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Now, let us recast the second-order Yee terms in a form that can be easily made positivity-preserving. For this purpose, the
second-order terms can be rewritten similarly to the positivity-preserving TVD schemes proposed by Parent for flux vector
splitting methods in Ref. [12]. This can be accomplished as follows. First note that the absolute value of the eigenvaluematrix
can be rewritten as:

jƒjiC1=2 D
1

2
.ƒiC1=2 C jƒjiC1=2/ �

1

2
.ƒiC1=2 � jƒjiC1=2/ (50)

Substitute the latter in the former:

FiC1=2 D L�1

i
ƒC

i
Li Ui C L�1

iC1
ƒ�

iC1
LiC1UiC1 C

1

4
L�1

iC1=2
.ƒiC1=2 C jƒjiC1=2/ ˆiC1=2MiC1=2

�
1

4
L�1

iC1=2
.ƒiC1=2 � jƒjiC1=2/ ˆiC1=2MiC1=2

(51)

Keep the latter on hold. Now, define the limiter matrices‰˙ such that the following hold:

L�1

i
‰C

iC1=2
.GC

iC1
� GC

i
/ �

1

2
L�1

iC1=2
.ƒiC1=2 C jƒjiC1=2/ ˆiC1=2MiC1=2 (52)

L�1

iC1
‰�

iC1=2
.G�

iC1
� G�

i
/ �

1

2
L�1

iC1=2
.ƒiC1=2 � jƒjiC1=2/ ˆiC1=2MiC1=2 (53)

whereG˙ is defined as:
G˙ � ƒ˙LU (54)

After substituting Eq. (52) and Eq. (53) into Eq. (51) the Yee-Roe flux becomes:

FiC1=2 D L�1

i
ƒC

i
Li Ui C L�1

iC1
ƒ�

iC1
LiC1UiC1 C

1

2
L�1

i
‰C

iC1=2
.GC

iC1
� GC

i
/ �

1

2
L�1

iC1
‰�

iC1=2
.G�

iC1
� G�

i
/ (55)

where the‰C diagonal limiter matrix can be obtained by first multiplyingall terms within Eq. (52) byLi , then rewriting in
tensor form, and then isolating‰C:

�

‰C

iC1=2

�

r;r
D

�

Li L
�1

iC1=2
.ƒiC1=2 C jƒjiC1=2/ ˆiC1=2MiC1=2

�

r

2
�

GC
iC1 � GC

i

�

r

(56)

Similarly, to obtain an expression for the‰� diagonal limiter matrix, multiply all terms within Eq. (53)by LiC1, rewrite in
tensor form, and isolate‰�:

�

‰�

iC1=2

�

r;r
D

�

LiC1L�1

iC1=2
.ƒiC1=2 � jƒjiC1=2/ ˆiC1=2MiC1=2

�

r

2
�

G�
iC1 � G�

i

�

r

(57)

As is commonly done with other TVD limiter functions, a smalluser-defined constant is added to the denominator on the RHS
of Eqs. (56) and (57) to prevent a division by zero. This is notproblematic and does not lead to a significant dependence of
the flux on an arbitrary user-defined constant because the limiter function‰ is eventually multiplied by the same quantity that
appears on its denominator when calculating the flux function in Eq. (55).

Thus far, the Yee-Roe flux has not been modified. Indeed, when the eigenvaluesƒ˙ outlined in Eqs. (10)-(11) and the
limiter matrices‰˙ outlined in Eqs. (56)-(57) are substituted in Eq. (55), the flux at the interface corresponds exactly to the
conventional Yee-Roe flux outlined in Eq. (46).

The reason why the Yee-Roe flux has been rewritten in Steger-Warming flux-vector splitting form is to obtain positivity-
preserving conditions on the limiter matrix, which can be derived following the approach outlined in Ref. [12]. This would
yield the following ranges on the limiter matrices (see Appendix A for a derivation):

�

ˇ
ˇ
ˇ
ˇ
ˇ

2
�

G�
iC1

�

r
�

G�
iC1

�

r
� ŒG�

i �
r

ˇ
ˇ
ˇ
ˇ
ˇ

<
�

‰�

iC1=2

�

r;r
<

ˇ
ˇ
ˇ
ˇ
ˇ

2
�

G�
iC1

�

r
�

G�
iC1

�

r
� ŒG�

i �
r

ˇ
ˇ
ˇ
ˇ
ˇ

(58)

�

ˇ
ˇ
ˇ
ˇ
ˇ

2
�

GC
i�1

�

r
�

GC
i�1

�

r
�
�

GC
i

�

r

ˇ
ˇ
ˇ
ˇ
ˇ

<
�

‰C

i�1=2

�

r;r
<

ˇ
ˇ
ˇ
ˇ
ˇ

2
�

GC
i�1

�

r
�

GC
i�1

�

r
�
�

GC
i

�

r

ˇ
ˇ
ˇ
ˇ
ˇ

(59)
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We can then combine Eq. (57) and the positivity-preserving condition (58), and further combine Eq. (56) and the positivity-
preserving condition (59) to obtain positivity-preserving expressions for the limiter matrices‰� and‰C, respectively:

�

‰�
iC1=2

�

r;r
D max

 

�

ˇ
ˇ
ˇ
ˇ
ˇ

�
�

G�
iC1

�

r
�

�G�
iC1=2

�

r

ˇ
ˇ
ˇ
ˇ
ˇ
; min

 �

LiC1L�1

iC1=2
.ƒiC1=2 � jƒjiC1=2/ ˆiC1=2MiC1=2

�

r

2
�

�G�
iC1=2

�

r

;

ˇ
ˇ
ˇ
ˇ
ˇ

�
�

G�
iC1

�

r
�

�G�
iC1=2

�

r

ˇ
ˇ
ˇ
ˇ
ˇ

!!

(60)

And similarly, we can obtain a positivity-preserving rangefor the limiter matrix‰C:

�

‰C

iC1=2

�

r;r
D max

 

�

ˇ
ˇ
ˇ
ˇ
ˇ

�
�

GC
i

�

r
�

�GC
iC1=2

�

r

ˇ
ˇ
ˇ
ˇ
ˇ
; min

 �

Li L
�1

iC1=2
.ƒiC1=2 C jƒjiC1=2/ ˆiC1=2MiC1=2

�

r

2
�

�GC
iC1=2

�

r

;

ˇ
ˇ
ˇ
ˇ
ˇ

�
�

GC
i

�

r
�

�GC
iC1=2

�

r

ˇ
ˇ
ˇ
ˇ
ˇ

!!

(61)

with the limiter matrixˆ defined in Eq. (48) and the vectorM defined in Eq. (47). The positivity-preserving expressionsfor
the limiter matrices expressed in Eqs. (60) and (61) are usedin conjunction with the flux at the interface, Eq. (55), whichcan
be rewritten in the following computationally efficient form:

FiC1=2 D L�1

i
GC

i
C L�1

iC1
G�

iC1
C

1

2
L�1

i
‰C

iC1=2
�GC

iC1=2
�

1

2
L�1

iC1
‰�

iC1=2
�G�

iC1=2
(62)

with G˙ � ƒ˙LU and�G˙
iC1=2

� G˙
iC1

�G˙
i

. For the stencil to be positivity-preserving, the positiveand negative eigenvalues
ƒ˙ (which are used to calculate the vectorsG˙) must be determined either as specified in Eqs. (21)-(22) or as specified in Eqs.
(44)-(45), and the user-defined constant� must be less than 2:

0 < � < 2 (63)

Because of errors due to round-off when using double-precision variables within the computer code, it is necessary to fix�

to 1.99 for most problems. Further, and rather interestingly, lowering� to within the range0:5 < � < 1:0 can help prevent
the solution from diverging to aphysical states when using high time steps, and can also help prevent convergence hangs when
solving steady-state problems. For these reasons,� is given a value of 0.5 for all the test cases here considered.

6. Positivity-Preserving Time Step

In the previous sections, it was found that by imposing the condition that the coefficients of the neighbor nodes within the
discretization equation must be positive, some first-orderand second-order flux functions could be obtained that are positivity-
preserving. However, such is not sufficient to ensure that the discretization equation conforms to the rule of the positive
coefficients and that the solution remains positivity-preserving. Indeed, while the flux functions proposed above ensure that the
coefficients of the neighbor nodes are positive, they do not ensure that the coefficient of the central node is positive. This issue
is here addressed by determining the conditions necessary to obtain a central node coefficient that is positive for both first-order
and second-order flux functions. Following the same steps asin Ref. [12], it can be easily demonstrated that this leads tothe
following condition on the time step:

�t <

8

<

:

�x
.��

ƒC
i

�

r;r
�
�

ƒ�
i

�

r;r

�

8r for a first-order flux function

�x
.�

2
�

ƒC
i

�

r;r
� 2

�

ƒ�
i

�

r;r

�

8r for a second-order flux function
(64)

It is emphasized that, when computing the positivity-preserving restrictions on the time step for flux difference splitting
schemes, it is important to use the expressions forƒ˙ outlined in Section 4 above (see Eqs. (21)-(22) and Eqs. (44)-(45)).
Interestingly, in regions of uniform properties, it can be shown that the positive and negative eigenvalues outlined inSection 4
are equal to the usual definition (i.e.ƒ˙ D 1

2
.ƒ ˙ jƒj/), and that the time step restrictions expressed in Eq. (64) correspond to

the one obtained from the CFL condition for a first-order flux function and to half of the one obtained from the CFL condition
for a second-order flux function. However, such is not the case in regions with non-uniform properties, where the positive
and negative eigenvalues proposed herein do not collapse tothe usual definition. Then, the time step restrictions derived here
can differ significantly from those given by the CFL condition, with a tenfold discrepancy not being unusual in the vicinity of
contact surfaces or shock waves.
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7. Interface Averaging

For the schemes proposed herein, the Jacobian at the interface (and its corresponding eigenvectors and eigenvalues) are not
determined through the Roe average but rather through a typeof arithmetic averaging. It is here preferred not to use the
Roe average because its use is found to yield unreasonably large Mach numbers within vacuums, and this eventually leads to
difficulties to maintain positivity due to round-off errors. Indeed, because the temperature is obtained from the thermal energy,
and because the thermal energy is obtained by subtracting the kinetic energy from the total energy, the temperature becomes
increasingly tainted with round-off errors when the kinetic energy is large compared to the thermal energy (which occurs when
the Mach number becomes large). This problem can be mostly avoided by replacing the Roe average by a type of arithmetic
average at the interface. Specifically, the Jacobian matrixat the interface between cells is obtained from the density,velocities,
and speed of sound as follows:

AiC1=2 D A.�iC1=2; aiC1=2; uiC1=2/ (65)

where the density� and velocityu at the interface are obtained through an arithmetic mean, while the sound speeda at the
interface is fixed to the maximum between the left and right sound speeds:

�iC1=2 D
1

2
.�i C �iC1/ ; uiC1=2 D

1

2
.ui C uiC1/ ; aiC1=2 D max.ai ; aiC1/ (66)

Fixing the interface sound speed in this manner as opposed toan arithmetic mean is found to improve, albeit slightly, the
resolution within viscous layers. The type of averaging at the interface proposed herein is not an “arithmetic averaging” per se
as it involves a max function. Nonetheless, for simplicity,we shall refer to the latter as “arithmetic averaging” to distinguish it
from the Roe average.

It is noted that by determining the Jacobian at the interfaceas outlined above, one important property of the Roe scheme
is lost: that is, a contact discontinuity can not be capturedexactly within one cell. Numerical experiments indicate, however,
that such is not a source of concern. For instance, when solving contact discontinuities propagating in time in a shocktube
(i.e. the Riemann problem), little or no difference can be observed between the arithmetic and the Roe averaging procedures.
Similarly, little discernible difference in solutions could be observed within shocks and expansion fans occurring intypical
aerodynamic flowfields. The only instance that the use of Roe averaging is found to improve somewhat the resolution is upon
solving high-Reynolds-number laminar boundary layers. Even then, the gains in resolution are limited to the flow regionvery
close to the leading edge, and such does not impact significantly the overall skin friction. Furthermore, numerous simulations
of flows of practical interest indicate that an arithmetic averaging procedure introduces minimal dissipation within turbulent
boundary layers, hence leading to a small number of nodes needed to obtain a grid-converged solution (see on this point the
grid convergence studies in Ref. [16] where the Roe scheme isused along with an arithmetic averaging procedure to solve
supersonic turbulent flows).

Additionally to preventing the Mach number from reaching excessively high values within vacuums, the arithmetic average
is advantaged over the Roe average by being straightforwardto deploy to arbitrary systems of conservation laws. Indeed, when
the governing equations are not limited to the mass, momentum, and total energy transport equations, but also include other
equations (such as the transport of turbulence kinetic energy and vibrational energy for instance), it is not clear how the Roe
average procedure should be modified to ensure that contact discontinuities can be captured within one cell. On the otherhand,
the type of arithmetic averaging outlined herein can be easily deployed to such systems of conservation laws, while limiting the
dissipation within viscous layers to a satisfyingly low amount.

8. Test Cases

The performance of the proposed positivity-preserving variants of the Roe and Yee-Roe schemes compared to the original
methods is now assessed through some numerical experimentsin 1D, 2D, and 3D. Although the flux functions proposed herein
were derived in 1D, they can be extended to multiple dimensions through dimensional splitting. That is, the flux derivative along
each dimension is discretized through a one-dimensional stencil function of the convective flux in the respective dimension,
along with its associated eigenvectors and eigenvalues. Because there exists an infinity of possible eigenvector sets applicable
to the 2D-3D Euler equations, and because the obtained solution depends on the eigenvectors, it is important to use the same
set of eigenvectors and eigenvalues as used herein to reproduce the results shown below. In this paper, the eigenvectorsand
eigenvalues are as specified in the Appendix of Ref. [12], because of their capability to capture waves with high-resolution even
when utilized in conjunction with discretization stencilsthat enforce positivity-preservation. Unless otherwise indicated, the
proposed method does not make use of an entropy correction. In “standard form” the flux is found from Eq. (62) with theƒ˙
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FIGURE 1. Density obtained with the proposed method at a time of 0.6 sfor the 3D Noh test case; the entropy correction factorı is set to 0.3.
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FIGURE 2. Density obtained with the proposed method at a time of 1 s for the 2D Sedov test case; the entropy correction factorı is set to 0.3.

eigenvalues outlined in Eqs. (21) and (22). In “iterative form”, the flux is determined from Eq. (62) with theƒ˙ eigenvalues
outlined in Eqs. (44) and (45). Further, it is emphasized that the arithmetic averaging presented in the previous section is
used only for the proposed stencils. For the original (non-positivity-preserving) Roe and Yee-Roe schemes, the Jacobian at the
interface is rather obtained through Roe averaging.

This section is divided in two parts. First, we assess the capability of the proposed method to preserve the positivity ofthe
density and pressure for several test cases that are known tobe particularly stringent. This is then followed by anotherseries of
test cases to determine whether the positivity-preservingvariant of the Roe solver proposed herein can capture as wellas the
original scheme some key flow features (such as viscous layers, rarefaction waves, shockwaves, etc).
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8.1. Positivity-Preservation Capability Assessment

One well-known deficiency of the Roe scheme is the incapability to conserve the positivity of the density in the presence of
strong rarefaction waves. Negative densities have been observed not only when a vacuum is created within the flow, but also
for relatively mild rarefaction waves. The appearance of negative densities is exacerbated when the Roe flux function isturned
second-order accurate through the Yee TVD limiting process. We now proceed to determine if the positivity-preserving variant
of the Yee-Roe scheme that is proposed in this paper fixes thisproblem. For this purpose, we here consider two test cases
that are known to present difficulties in maintaining positivity: the Sedov blast wave case and the Noh problem. Because both
problems involve strong shock waves, it was deemed necessary to set the entropy correction factorı to 0.3 to prevent aphysical
phenomena from occurring.

First consider the particularly stringent 3D Noh problem, which consists of a gas with a specific heat ratio of 5/3 and a gas
constant of 286 J/kgK with the following initial conditions: the inward radial velocity is set to 1 m/s, the pressure is set to as
close to zero as possible, and the density is set to 1 kg/m3. Effectively, this entails initially a flow with an infinite Mach number
directed towards the origin. To prevent a singularity, the initial pressure is not set to zero but rather to10�6 Pa. The problem
is here solved on a structured Cartesian mesh composed of1293 equally-spaced nodes spanning a domain of.0:512 m/3. As
the solution progresses in time, the boundary nodes are updated as follows: the pressure and the velocities remain fixed to the
initial conditions while the density is updated according to the following exact solution [17, 18]:

� D

(

.1 C t=r/2 for r > t=3

64 for r � t=3
(67)

wherer is in meters,t in seconds and the resulting� is in kg/m3. When solving this test case, the Yee-Roe flux function yields
negative densities after a few iterations, even when using very small time steps several orders of magnitude below the CFL
condition. On the other hand, as shown in Fig. 1a, the solution yielded by the proposed method is free of negative densities or
temperatures as long as the time step is set to no more than onethird the one yielded by the condition derived in Section 6.2
(it is noted that condition (64) is valid for a 1D system of conservation laws; in 2D, the time step needs to be reduced twofold,
and in 3D, threefold). Further, as shown in Fig. 1b, the method proposed herein is seen to match reasonably well the theoretical
solution despite the relatively low number of grid points used.

A second test case that can lead to some difficulties in preserving the positivity of the density and pressure is the Sedov blast
wave case, which consists of a gas with a specific heat ratio of1:4 and a gas constant of286 J/kgK initially at rest with a density
of 1 kg/m3 and a pressure of10�6 Pa. The mesh is constructed of10242 cells of equal width and height spanning a domain of
.2:5 m/2. For one cell at the origin, the pressure is set initially to0:3917056 Pa� m2 =Acell with Acell the area of the cell. The
high pressure difference between the cell at the origin and its neighbors induces a strong cylindrical shockwave followed by a
rarefaction wave, eventually leading to very low densitiesat the center of the domain. As shown in Fig. 2a, the solution yielded
by the proposed method is free of negative densities or temperatures and displays good agreement with the exact solution: at a
time of t D 1 s, the exact solution yields a shock located at a radius of 1 m and a density peak of6 kg/m3 (see Refs. [19, 20]),
which is corroborated by the results with the method proposed herein (see Fig. 2b).

Although not shown here for conciseness, the positivity-preserving capability of the proposed method has been further
verified through the 2D Noh problem and the 3D Sedov problem, as well as through the stringent 1D, 2D, and 3D test cases
outlined in Ref. [12]. The test cases outlined in the latter reference are such that the conventional Roe and Yee-Roe schemes
fail to maintain the positivity of the density or the pressure, even for time steps well below the CFL condition. Such doesnot
occur however using the stencils proposed herein: no negative densities or pressures were observed as long as the time step is
fixed following the conditions presented in Section 6 above.

8.2. Accuracy Assessment for Flows of Interest

It is emphasized that the present approach achieves positivity-preservation by modifying both the first-order Roe terms and the
second-order Yee terms as well as the type of averaging at theinterface (i.e. arithmetic average instead of Roe average). It may
be argued that these modifications result in stencils that donot retain the appealing features of the original schemes. For this
purpose, we now proceed to determine through the simulationof some key problems if the proposed stencils do perform as
well as the original Roe and Yee-Roe methods with respect to high-resolution capture of discontinuities, low dissipation within
viscous layers, and ease of convergence to steady-state.

One appealing attribute of the Yee-Roe flux function is the capability to capture viscous layers while introducing a minimal
amount of dissipation. It can be verified if the present approach retains this attribute through the simulation of a laminar
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FIGURE 3. Comparison between the proposed method (using arithmetic averaging), the Yee-Roe second-order scheme (using Roe averaging),
and the Steger-Warming flux limited scheme on the basis of skin friction coefficient at the wall for the boundary layer testcase; one node in
two is shown.

boundary layer over a flat plate. The simulation of high-Reynolds-number laminar boundary layers is especially difficult
because the molecular diffusion taking place within laminar boundary layers is often of the same order of magnitude (or even
less) than the aphysical dissipation introduced by the flux discretization scheme. In fact, several commonly-used flux functions
(such as the Steger-Warming FVS method, or the Jameson second-fourth order artificial dissipation scheme, HLL, etc) introduce
such a large amount of aphysical dissipation that an acceptable estimate for the skin friction can only be obtained if more than
hundreds or even thousands of grid lines are clustered within the boundary layer.

To quantify the amount of aphysical dissipation introducedwithin viscous layers, consider air flowing over a flat plate with
a Mach number of 2, a pressure of 0.1 bar, and a temperature of 300 K. The results are obtained using an orthogonal mesh
which is constructed such that most of the nodes are distributed within the boundary layer (specifically: 60% of the gridlines
are distributed, equally-spaced, within 2 mm of the wall). In Fig. 3, a comparison is offered between the proposed stencils
and some conventional second-order Roe and Steger-Warmingflux functions on the basis of the skin friction coefficient atthe
wall. The Yee-Roe scheme (with Roe averaging at the interface) can be seen to perform admirably well for this problem: even
for the coarsest mesh considered, it yields a solution that is essentially grid-converged and that is in near-perfect agreement
with the theoretical prediction (the small discrepancy is due to the analytical solution being inapplicable near the leading edge).
On the other hand, the Steger-Warming scheme introduces excessive dissipation and yields a skin friction at the wall several
orders of magnitude lower than the theoretical prediction,even for the finest mesh considered. Although not shown here,a grid
convergence study indicates that, in order to match the resolution of the Yee-Roe flux function, the Steger-Warming method
would require a mesh that is at least 100 times more refined near the wall. On the other hand, the present approach performs
significantly better than the Steger-Warming scheme, by exhibiting a resolution approaching the one of the Yee-Roe method:
on either coarse or fine meshes, the skin friction coefficientis within a few percent of the analytical solution over most of
the flat plate (see Fig. 3). Several other simulations of laminar and turbulent flows over flat plates confirm that the present
approach performs essentially as well as the original Yee-Roe method in capturing either boundary or shear layers, while being
positivity-preserving and using an arithmetic average at the interface.

A second appealing attribute of the Yee-Roe flux function is the capability to capture discontinuities with “high-resolution”.
High resolution here refers to the property of a method to capture with few nodes discontinuous or continuous waves whilenot
introducing spurious non-physical oscillations. Roe-based flux functions perform very well in this regard compared toother
methods. Indeed, compared to the Roe scheme, many other discretization stencils are either more dissipative (eg. HLL, Steger-
Warming) or introduce more spurious oscillations (eg. Jameson 2nd-4th order artificial dissipation, AUSM) in the vicinity of
contact surfaces or shockwaves. The high-resolution capability of the Yee-Roe method is due, in part, to the first-orderRoe
terms being monotonicity-preserving while introducing minimal dissipation in the vicinity of discontinuities, and,in part, to the
second-order Yee terms being total variation diminishing (i.e., capability to maintain the monotonicity-preservingproperty of
the underlying first-order scheme while reaching second-order accuracy in smooth flow regions). Because the present approach
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FIGURE 4. Comparison between the proposed method (using arithmetic averaging) and the Yee-Roe second-order scheme (using Roeaver-
aging) for the Riemann problem test case at a time of 0.8 ms.
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FIGURE 5. Comparison between the proposed method (using arithmetic averaging), and the Yee-Roe scheme (using Roe averaging) for the
Mach 2.5 channel flow test case on the basis of the steady-state density contours (in kg/m3) obtained using a61 � 61 mesh.

modifies both the first-order Roe terms and the second-order Yee terms in order to attain positivity-preservation, it is important
to quantify the amount of resolution lost due to these modifications. For this purpose, consider air with a density of 1 kg/m3

initially at rest in a constant-area duct. The air is given initially a pressure of 1 bar forx < 0:5 m and a pressure of 0.1 bar for
x � 0:5 m, and the solution is advanced in time through an explicit Euler algorithm. As can be seen through the Mach number
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profiles plotted in Fig. 4, the present approach yields a solution that is nearly identical to the one of the original Yee-Roe flux
function: very little difference can be observed through the contact surface, and essentially no difference is apparent through
the shockwave or the expansion fan. Although not shown here for conciseness, several other test cases in 1D, 2D, and 3D yield
a similar conclusion, and confirm that the enforcement of positivity-preservation through the rule of the positive coefficients
and the replacement of the Roe average by an arithmetic average do not diminish significantly the high-resolution capabilities
of the Yee-Roe scheme.

A third appealing attribute of the Yee-Roe scheme is its capability to yield a converged solution for a wide variety of
flows. A solution is considered “converged” when the discretized equations on all nodes are solved to an acceptable levelof
accuracy. Obtaining a converged solution is trivial when using an explicit Euler time marching algorithm to solve time-accurate
cases, because an explicit Euler scheme solves the discretized equations on each node exactly. However, when solving time-
accurate problems through an implicit dual-time stepping strategy or, alternately, when solving steady-state problems through
a pseudotime relaxation procedure, there is no guarantee that the solution yielded by the flow solver is converged, even after
a large number of iterations. In certain cases, obtaining a converged solution can be problematic because of convergence
hangs originating from the limited second-order terms. Compared to alternative approaches (especially other TVD schemes),
the Yee-Roe method fares well in this regard and offers good convergence behavior for various types of flows. To verify if
the positivity-preserving variant of the Yee-Roe scheme proposed herein exhibits as good convergence characteristics as the
original method, various types of steady-state problems have been investigated: in all cases, not only did the present approach
converge as well as the original scheme, but little or no discernible differences could be found in the obtained solution. For
instance, consider a steady inviscid supersonic flow over a triangle in a channel with a Mach number of 2.5, a temperature of
300 K, and a pressure of 0.1 bar. Through an iterative pseudotime-stepping relaxation process, the residual of the discretized
equations on all nodes is minimized sufficiently that a converged solution is obtained. As can be seen through the steady-state
density contours in Fig. 5, the present approach yields a solution that is essentially identical to the one of the Yee-Roeflux
function with no apparent discrepancy within either the shocks or expansion fans.

9. Conclusions

A new positivity-preserving variant of the Roe flux difference splitting scheme is obtained by modifying the Roe flux function
such that the associated discretization equation conformsto the rule of the positive coefficients. To satisfy the rule of the
positive coefficients, all the coefficients within the discretization equation should have positive eigenvalues and have the same
eigenvectors as those of the flux Jacobian. Because the modification does not alter the Roe wave speeds at the interface
(the amount of wave speed lost by the right node is gained by the left node, and vice-versa), the modified stencils retain the
favorable features of the original method such as high-resolution capture of discontinuities and of viscous layers. The positivity-
preserving variant of the Roe scheme is extended to second-order accuracy through the Yee centered TVD limiters appliedto
the characteristic variables. To ensure that the second-order flux function is positivity-preserving, the Yee limiting process is
altered such that it results in a discretization equation obeying the rule of the positive coefficients. Several test cases indicate that
the extra amount of dissipation necessary to ensure positivity-preservation is typically negligible, and only becomes significant
when the original method introduces negative densities andtemperatures.

By imposing the rule of the positive coefficients on the discretization coefficient in which the time step appears, a positivity-
preserving condition on the time step applicable to flux difference splitting schemes is derived. The so-obtained time step
condition is shown to revert to the CFL condition in regions of uniform properties, but to depart from the latter in regions
with appreciable property gradients. This is confirmed through various numerical experiments: near contact discontinuities or
shock waves, the time step needed to ensure positivity preservation of flux difference splitting schemes can differ by anorder
of magnitude or more from the one obtained from the CFL condition.

In order to prevent the Mach number from reaching excessively high values in vacuums, it is found necessary to replace the
Roe average by a type of arithmetic averaging at the interface. In so-doing, the scheme can not capture a contact discontinuity
exactly within one cell. However, numerous test cases indicate that this is not a cause for concern: the replacement of Roe
averaging by arithmetic averaging is found to have negligible impact on the solution except near the leading edge of high-
Reynolds-number laminar boundary layers. Even in such regions, the dissipation introduced by the arithmetic average is
minimal, and the shear stress and boundary layer height are close to those obtained with the Roe average. Other than preventing
the Mach number from reaching too-high values within vacuums, arithmetic averaging is advantaged by being straightforward
to extend to arbitrary systems of conservation laws.

Compared to previous positivity-preserving variants of the Roe scheme, the proposed method is noteworthy by being written
in general matrix form. That is, the flux function depends solely on the vector of conserved variables, the convective fluxvector,
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and the convective flux Jacobian and its associated eigenvectors and eigenvalues. Therefore, the present method can solve not
only the 1D Euler equations, but can be readily deployed to other systems of conservation laws such as the 2D-3D Euler
equations in generalized coordinates (as done herein for several test cases). Positivity-preservation is guaranteedas long as
the system of conservation laws adheres to the rule of the positive coefficients. Although the proof of the rule of the positive
coefficients is limited to the perfect-gas Euler equations,some preliminary theoretical analysis and numerical experiments
suggest that it may also be applicable to other fluid flow governing equations, including real gas effects, transport of multiple
species densities, transport of turbulence kinetic energy, etc. Further study is nonetheless required to substantiate these claims,
and to confirm whether the flux difference splitting schemes presented herein remain positivity-preserving for more intricate
sets of governing equations.

A. Derivation of Positivity-Preserving Range on Limiter Function

The positivity-preserving limits on the limiter function are here derived for the Yee-Roe flux. This can be accomplishedby first
substituting the Yee-Roe flux function, Eq. (55), into the discrete equation, Eq. (12):
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Then, following the approach outlined in Ref. [12], the latter can also be written as:
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In order for the latter to be equal to the former, the discretization coefficients must be defined as:
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According to the rule of the positive coefficients, a discretization stencil is positivity-preserving if all the coefficients are posi-
tive, with a positive coefficient having all-positive eigenvalues and having the same eigenvectors as those of the flux Jacobian.
It can be readily seen that the coefficientC nC1

i satisfies these requirements. Further, the coefficientCi becomes positive for a
small-enough time step. However, such is not the case for theother two coefficients. Let us now determine the conditions on
the limiters matrices‰˙ that ensure that the coefficientsCi�1 andCiC1 are positive.

For the coefficientCiC1 to be positive, it must have the same eigenvectors as those ofthe flux Jacobian and have all-positive
eigenvalues. Then, it follows that Eq. (A.6) must correspond to:
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with DC
iC1 denoting a diagonal matrix with positive diagonal elements. Multiply all terms by2LiC1 and express the terms in

tensor form:
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For the stencil to be positivity-preserving, all diagonal elements of the matrix
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Divide through by
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To obtain the latter, it is noted that we divided by
�

ƒ�
iC1
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, which is either negative or zero when using the positivity-preserving

variant outlined in Eq. (21) or in Eq. (45). A division by zerocould be avoided by redefining the negative eigenvalues such
that they never exceed a negative number of small magnitude.However, such is not deemed necessary because the potential
division by zero only appears in an interim equation and not in the final flux function.

If the LHS of (A.11) is negative, the condition is guaranteedto be satisfied. Therefore, we can take the absolute value of the
terms on the LHS without losing generality:
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Further, it can be easily shown that condition (A.12) yieldsthe following bounds on the limiter function‰�:
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Having found the conditions on the limiter function‰� that yield a positivity-preserving stencil, proceed to determine the
conditions on the limiter function‰C. This can be accomplished starting from Eq. (A.5) and following the same steps as above.
The following is thus obtained:
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The latter yields the following bounds on the limiter function‰C:
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