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Sheath Governing Equationsin Computational
Weakly-lonized Plasmadynamics

Bernard Pareiit Mikhail N. Shneidef and Sergey O. Macheret

To date, fluid models of plasma sheaths have consisted obilyging of the electric field po-
tential equation obtained through Gauss’s law to the clthspecies conservation equations
obtained through the drift-diffusion approximation. Whéiscretized using finite-difference
stencils, such a set of equations has been observed to leufzaly stiff and to often require
more than hundreds of thousands of iterations to reach cgenee. A new approach at solving
sheaths using a fluid model is here presented that reduceficsigtly the number of iterations to
reach convergence while not sacrificing on the accuracyeé€timverged solution. The method
proposed herein consists of rewriting the sheath govertugtions such that the electric field
is obtained from Ohm'’s law rather than from Gauss’s law. Teueathat Gauss's law is satisfied,
some source terms are added to the ion conservation equatweeral time-accurate and steady-
state cases of dielectric sheaths, anode sheaths, andleatheaths (including glow and dark
discharges) are considered. The proposed method is se@iddhe same converged solution
as the conventional approach while exhibiting a reductioadmputational effort varying be-
tween one-hundred-fold and ten-thousand-fold wheneegplisma includes both quasi-neutral
regions and non-neutral sheaths.

1. Introduction

N PLASMADYNAMICS, a “sheath” refers to a plasma region thatdcated adjacent to surface boundaries and that is

significantly non-neutral. That is, a sheath always exbidisubstantial difference between its positive and negjatiarge
densities. Several different types of sheaths are recedniepending on the type of boundary material and also dépgon
the direction of the electric field near the surface. Wherbihwendary is a dielectric, the electric field generally psittwvards
the surface. In such a case, the plasma near the dielectriarhaxcess of positive charge, is a few Debye lengths thick, a
is denoted as a “dielectric sheath”. When the boundary identrede and the electric field points away from the surftve,
plasma close to the electrode has an excess of negativeeciadlgs denoted as an “anode sheath”. When the boundary is an
electrode and the electric field points towards the surfhegplasma close to the electrode has an excess of positivgehnd
is denoted as a “cathode sheath”.

An accurate solution of the cathode sheath is generallyiariecpredict correctly the current and electric field diattion
through the rest of the plasma. This follows from the plasesr the cathode being characterized by an electron numbsityle
that is so low that the current in that region is mostly iomither than electronic. Because the ion mobility is substéiytess
than the electron mobility, it is not uncommon for the cortéiity in the vicinity of the cathode to be less than one tremdth
of the conductivity within the rest of the plasma. Such a l@mductivity near the cathode results in a large voltage fsop
desired current, and this in turn leads to a large amountwepdissipated within the sheath in form of heat. Becaushisf t
accurately modeling sheaths is generally deemed esstméiabess adequately the performance of plasma-baseéslsuith
as MHD generators and accelerators [1, 2], or plasma actj@o4, 5].

Because the sheath thickness is typically very small coetpiarthe size of the plasma, its accurate resolution maysnece
sitate a substantial refinement of the grid near the boueslafio overcome this problem, the sheath and the plasma aolk ¢
be solved through independent methods and “patched” to@heh through some adequate boundary conditions [6, 7]laVhi
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the patching approach is advantaged by not requiring thetlstaed the rest of the plasma to be solved in coupled fornmcéhen
providing substantial savings in computational efforisiuestionable how well it can model more complex situaiahere
a strong coupling may occur, such as those involving motfaheneutrals and magnetic field effects.

To overcome the limitations of the patching method, a cadigtdution of the plasma bulk and sheath is necessary. This
can be accomplished through a kinetic simulation [8], aiglarin-cell simulation [9], or through a fluid model [10, 112].
Also known as the “drift-diffusion” model, the fluid model ¢sirrently the method of choice in simulating sheaths thatldio
occur within plasma aerodynamic applications (see fomimst Refs. [13, 14, 15]). Indeed, when solving the relatitgh
density flows typical of plasma aerodynamics problems, tbeerdetailed physical models associated with kinetic Stiahs
or particle-in-cell simulations entail computing effotitsat are beyond the capabilities of present computers.

To date, fluid models of plasma sheaths have consisted obth#ing of the electric field potential obtained through Gsisi
law to the electron and ion conservation equations obtaimexligh the drift-diffusion approximation. While such aasegy
has had considerable success, it suffers from very slowergance when solving plasmas that include quasi-neutyains.
When a quasi-neutral region forms within the plasma, ttifnesis of the governing equations is such that typicallylwnedred
thousand iterations or more are needed to reach stea@y-§ath slow convergence has been observed not only foic#xpli
relaxation schemes but also for fully-coupled implicitaok. For this reason, quasi-neutral plasmas that do nloidesheaths
are typically solved by obtaining the electric field from Obkhaw rather than from Gauss'’s law. The stiffness of the goivey
equationsis then relieved substantially and the compeefifogt can be reduced one-hundred-fold or even more. Suchtegy
cannot be used for a plasma that includes non-neutral shdaitvever, because an electric field that is obtained from’©h
law may not necessarily satisfy Gauss’s law, and becausmthect solution of Gauss’s law is crucial to model the netral
regions of the plasma correctly.

It is here argued that the last statement is not necessanifgat. That is, it is not mandatory to obtain the electritdfie
from Gauss’s law to ensure that the latter is satisfied. Asheildemonstrated in this paper, it is possible to use Ohmwdda
obtain the electric field within the non-neutral sheath esagiwhile satisfying Gauss’s lawin so-doing, remarkable gains in
computational efficiency are realized when solving plasthasinclude both sheaths and quasi-neutral regions.

This paper does not constitute the first attempt at solvimgits using Ohm’s law. For instance, in Refs. [16, 17, 18], a
thermionic cathode sheath is solved by determining theréeield from a form of Ohm’s law. The method outlined in the
latter references, however, does not ensure that Gaugsis katisfied and is hence only applicable to thermionic gfseand
not to cold cathode sheaths, dielectric sheaths, or anastglsh In contrast, we here propose a set of governing egsati
that is such that the electric field is determined from Ohmawg While ensuring that Gauss’s law is satisfied. The novebket
governing equations proposed herein results in the samerged solution as the conventional set (in which the atefigld is
determined directly through Gauss'’s law) while yieldingvasch as a ten-thousand-fold reduction in computing effoits is
attributed to the proposed governing equations being derably less stiff and hence permitting the use of signifigdarger
time steps when being integrated.

It is noted that a “stiff” system of equations here does noessarily denote a system in which there is a large discogpan
between the eigenvalues or the physical time scales. Rathdrere adopt Lambert’s definition of stiffness in the maeayal
sense [19, page 220] with a slight modification to make itigpple to non-linear systems of equations:

Definition If a numerical method, applied to a system with any initiahditions, is forced to use in a certain
interval of integration a steplength which is excessiveial in relation to the smoothness of the exact solution in
that interval, then the system is said todti#f in that interval.

When defined in this manner, stiffness is not an intrinsicpprty of the physical model: stiffness can originate frora th
disparity between the physical time scales, but can algpnate from other attributes of the system of equations Geapter

6 in Ref. [19]). For instance, when a physical model involsegeral conservation laws dependent on each other, thereres
than one way that the governing equations can be expresseédha equations may exhibit more or less stiffness depgndin
on how they are written, despite solving the same physicalehand sharing the same physical time scales. Rewriting the
governing equations differently while keeping the phyksimadel the same was the strategy used to reduce the stiibfidiss
system associated with a quasi-neutral multicomponestpamodel in Ref. [20], with a currentless plasma model in Ref
[21], and with a two-fluid Euler-Poisson plasma model in R22]. The methods outlined in the latter references, howeve
can not be readily extended to the drift-diffusion model lnéaths. In this paper, we show that the stiffness of the sysfe
equations associated with the drift-diffusion model ofagthe can also be alleviated substantially through a recatfferent
form, despite the recast set of equations solving the saiysqat model as the original set.
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2. Physical Model

The physical model considered herein determines the eledon, and neutral properties through macroscopic-scasport
equationsi(e. the so-called drift-diffusion model). Such can accurafalgdict using the same set of differential equations
both the non-neutral plasma sheaths and the quasi-nelasaha bulk, including ambipolar diffusion and ambipolaiftdr
phenomena. Itis emphasized that the physical model pesénthis section is commonly used to model sheaths takicgpl
in weakly-ionized plasmas (plasmas with an ionizationtfoacless thanl0—#-1073). For instance, in Refs. [5, 10, 11, 12,
13, 14, 15], the same physical model as used herein (or & skgiant) is used to solve sheaths occurring in glow dispbsyr
plasma aerodynamics, MHD generat@ats,.

In a fluid model of plasmas, the conservation equation fon &gue of charged species can be expressed in general form as:

ONy d
W_Fa(Nka)_Wk 1)

whereN; is the number densityy, represents the sources and sinkg(due to ionization, recombination, attachment, and
detachment), an#; the charged species velocity including both drift and diifun. Starting from the momentum equation of
an unmagnetized plasma in which the neutrals are at reskpaiassion for the charged species velocity can be derived:

MkkBTkaﬂ
|Ck|Nk dax

Vk = Sk/,LkE — (2)
wheres; is the sign of the charge of the species under consideratibriaf electrons#-1 for positive ions) Cy is the charge
of the ion or electron under consideration (equaktofor the electrons and-e for the singly-charged positive ionsl, the
electric field, T, the temperature of the charged speckgshe Boltzmann constant, apg the mobility of the charged species.
By substituting the charged species velocity from Eq. (&) Eq. (1), we obtain the ion and electron conservation egusit

aNi a aN,

-, a. iNE—Di— | =W

ot T ax (“ M ax) W 3
ey 2 NE— DN @)
o oax \Hee “ox ) c

where we defined the ion and electron diffusion coefficiestsgithe Einstein-Smoluchowski relationship:

_ ikeT; _ MeksTe

e

D

and D, (5)
To close the system of equations, it is necessary to find aressijon for the electric field. This can be obtained from Gaus
law:

LN ©
X €o
with e the elementary charge amglithe permittivity of free space.

In the physical model outlined above, the effects due tasiofis between charged species, shear stresses, changgiaf i
multiple ion species, acceleration of the bulk of the plasasavell as the effects of diffusion due to temperature gratdi are
ignored. This is not a source of concern as such effects ajligiide in many weakly-ionized plasmas (see Ref. [23])r Fo
example, the Coulomb collisions can be ignored in virtuallyglow and non-equilibrium RF discharges where the iotiza
fraction is lower thanl0~*; one sort of ions often (albeit not always) dominates; theaslstresses can be demonstrated to be
orders of magnitude lower than the collision forcets, Furthermore, the proposed method can readily be modifieattade
several of these effects. For instance, the collisions &etveharged species can be included simply by redefiningabdities,
leaving all other equations the same (see Chapter 2 in Rg). [3imilarly, the motion of the neutrals can be incorpethby
adding the neutrals mass and momentum conservation ensiatitonetheless, we prefer not to do so in the present paper,
because this would not impact appreciably the solutionennitreasing the complexity of the physical model unnecégsa
As well, we do not expect the addition of such effects to dffiee gains in convergence acceleration obtained with thteode
proposed hereafter.
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3. Conventional Sheath Governing Equations

The term “conventional governing equations” here dendtesset of partial differential equations that are genenadlgd to
solve the physical model outlined in the previous sectiamthe conventional set of governing equations, the eletitid
is determined from a form of the potential equation obtaifieth Gauss’s law. This can be found starting from Eq. (6) and
assuming that a potentiglexists such thak = —d¢/dx:

9%¢ e

el ——(Ni = Ne) )

X )

The conventional governing equations hence consists ofz@and of the ion and electron conservation Eqgs. (3)-(4)s Tan
be expressed in general matrix form as:

o9 9 (U
=7z 4 94— 2L (kY
o T oAy ax( ax) S ®

with R the residual vector which we seek to minimize  0) and theU, S, 4, K, Z matrices equal to:

N, 4 MiE 0 0 D, 0 0 1 0 0
U=|N| §= W, A=|0 —wE o K=|0 D.o| z=|0o1 0| (9
¢ < (N, — N) 0 0 0 0 0 1 00 0

€0

The latter set of governing equations has been observeddarbeularly stiff and difficult to integrate whenever a gizaeutral
region of substantial size appears within the solution. demh problems, numerical experiments indicate that thermax
time step that can be imposed on either the ion or electrosergation equation is limited by the CFL condition, even whe
using an implicit scheme. Because of the high electron Wglactime-step bounded by the CFL condition effectivelguits

in very slow convergence to steady-state, which is typjaatiitained after hundreds of thousands of iterations.

4. Proposed Sheath Governing Equations

To reduce the computational effort needed to solve plasimatsiniclude both non-neutral and quasi-neutral regionsva n
method is presented here. The method proposed consistgaihioly the electric field potential from a form of Ohm’s law
instead of Gauss’s law. Then, to guarantee that Gauss’sslaatisfied both in the neutral and quasi-neutral regiomagso
source terms are added to the ion conservation equation.

To yield a valid solution to the physical model presentedect®n 2, the “Ohm’s law” must be derived from the charged
species conservation equations. This can be done by firsbstihg the electron conservation equation (Eqg. (4)) ftbenion
conservation equation (Eg. (3)):

0 ad oN; ON,
E(M_Ne)"_ E (MiM+MeNe)E_Di_+De

=W, -W, 10
0x 8x) (10)

Because charge cannot be created or destroyed throughehsoeth reactions, it follows that the ion chemical souraente
cancels out the electron chemical source téWh— W, = 0). Further, after multiplying all terms by the elementary igjee,
we obtain:

d aJ
- ]VI — Ne — =0 11
5, )+ o (11)
with the current density defined as:
N, ON.
J=0FE —eD— +eD, (12)
ax 0x
and with the conductivity defined as:
0= e(/ftijvi + I’LeNe) (13)

Equation (12) is commonly referred to as Ohm’s “law”. It isijted out that the form of Ohm’s law presented in Eq. (12) and
the conductivity presented in Eq. (13) are only applicablthe physical model outlined in Section 2. For a differentstal
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model, Ohm’s law and the conductivity would take on diffaérimms (see Ref. [23] for details). Further, should a pasdmt
exists such thatk = —d¢/dx, Eq. (11) becomes:

%e(Ni — N + % (—og—f eD, ({;ﬂ +eD 881;7 ) =0 (14)
This completes our derivation of the potential equatioredasn Ohm'’s law. Because the latter is obtained solely froen th
ion and electron conservation equations, Eq. (14) is redoindndeed, the solution of Eq. (14) is guaranteed provitad
the ion and electron conservation equations are solvedrmdtely, the solution of the ion conservation equatioruisrgnteed
provided that Eq. (14) and the electron conservation eguatie solved. Because there are three unknoWns\,, andk), it is
hence necessary to find a third independent equation. Thiseabtained by adding some source terms to the ion coniervat
equation to make sure that Gauss's law is enforced. For thjgose, recall the standard form of the ion conservatioatou,

Eq. (3):

oN, 0 N,
—_— - — (WLiNE 15
or  ox ( o ) T gx WNE) = (15)
Split the last derivative on the LHS:
oN, 0 N, d oE
— - | Diw E— (W iN— =W 16
o1 ax( 8x)+ g (V) + i (16)
But recall Gauss's law, Eqg. (6), and substitute in the latter
N, 8 oN;
E_ (/”LIN) D W ,lL, | (N Ne) (17)
A ox

We now have 3 independent equations for three unknownshéinewly-recast ion conservation equation including seurc
terms to impose Gauss'’s law, Eg. (17), (ii) the electron eoretion equation, Eqg. (4), and (iii) the potential equatiased on
Ohm’s law, Eq. (14). This set of equations can be written imggal matrix form as follows:

U a 3 ([ oU
=z 4+ Lavy+ 2L uy- 2 (k) - 18
o T ax AU T EL(BU) 8x( 8x) S (18)

with R the residual vector which we seek to minimize - 0) and theU, S, Z, A, K, andB matrices equal to:

N, I/Vi_/'LiMé(Ni_Ne) I 0 0 0 0 0 mi 00
U=|N, S = W, Z=|0 1 0] A=|0 —u.E O B=(0 0 0
:¢ 0 e — 0 0 0 0 0 0 0 (19)
D; 0 0
K=1]20 D. O
|eD; —eD. o

Because the latter set of equations does not obtain the tithom Gauss’s law, it is considerably less stiff and easo
integrate in the quasi-neutral limit than the standard §sheath equations. The reasons for this will be discuss&gation

8 below. A similar strategy was employed in a previous pageChspelet al. [22] where the stiffness of the Euler-Poisson
equations was alleviated by rewriting the set of equatioch shat the potential is not obtained from Gauss'’s law diyglout
obtained from a different Poisson equation that is easiartégrate. However, the approach presented herein diffens the
one outlined in Ref. [22] by being applicable to the drifffdsion model rather than the Euler-Poisson model. Fuyteewill

be shown below through numerous test cases, while such st ifdae equations relieves the stiffness of the systemffieis
from not exhibiting as high a resolution as the standardfsejoations when solving sheaths (a higher resolution mepéieés

a smaller numerical error on coarse meshes). This issuansaddressed by rewriting the electron conservation equétio
“ambipolar form”.

4.1. Ambipolar Form

The set of governing equations proposed in Eqgs. (18)-(18)beafurther improved by recasting the electron consematio
equation in terms of drift and ambipolar diffusion terms. vas shown in Ref. [20], there is a computational advantage
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in doing so: when written in ambipolar form, the charged sgetransport equations depend less strongly on the patenti
equation, and this leads to a beneficial reduction of the laogipetween the potential and the electron and ion dessifie
yield a computational advantage, however, the ambipofarsibn terms must be written such that they do not dependhen t
electric field. Further, this needs to be accomplished widlealtering the physical model shown above in Section 2 these
reasons, we follow Ref. [20] in which an approach is presgtd@®btain an exact solution to the ambipolar diffusion Giorint
which is free of the electric field. This is in contrast to tmetapolar diffusion method proposed in Refs. [25, 26] whither
yields an ambipolar diffusion coefficient function of theeetric field, or alters the physical model through an apprnate
expression for the electric field found within the ambipal#fusion terms.

Thus, following Ref. [20], we can derive the “ambipolar fdrof the electron conservation equation from the physical
model as follows. Let us first definB’” as the component of the electric field that cancels out thepooent of the current
originating from mass diffusion of the charged species (seeurrent components in Eq. (12)):

oN; N,
oE =eDi— —eD, (20)
ax ax
IsolateE’: D. 3N D.ON
E = ebi olNi  elle 0Ve (21)
o dx o dx
Recall the electron conservation equation, Eq. (4), andaaddsubtrack’ to the electric field as follows:
ON, 0 N,
+ — | —ueNe(E — E'+ E') — D =W (22)
ot ax ax
Then, let us substitut€” from Eq. (21) in the latter and regroup similar terms togethe
IN, d e JIN, e ON,
— | —eN(E — E') — —pueNeDi— — (1 — —eNe) De— ) = W, 23
8t+8x(u ( ) Uu ax ( o'u ) ax) (23)

But recall the definition of the conductivity from Eq. (13),= e(ui N; + u.Ne). Then the last term on the LHS simplifies and
the electron conservation equation becomes:
ON, 0 N,

N,
+ o (N E — E) = SpaNoD S — S uNiDS2 ) = W (24)
at 0x o x o 0x

The latter is the “ambipolar form” of the electron conseimatquation. Indeed, noting that the ion mobility is mucésléhan
the electron mobility, it can be easily shown that the diffasterms in Eq. (24) will collapse to the well-known ambiaol
diffusion term for a three-component quasi-neutral plagsea for instance Ref. [20]):

iﬂeNeDi% + EMiNiDe% ~ (1 + E) Di% for No ~ N, (25)

o ox o dax Ti dax
We emphasize that the newly derived ambipolar form of theteda conservation equation is obtained from the physicaleh
without making any approximation. Because of this, whetherstandard form Eq. (4) or the ambipolar form Eq. (24) of the
electron conservation equation is solved, the solutioainbt will be essentially the same provided enough gridtpaire used
to minimize the numerical error. This is true when the plassrguasi-neutral but also when the plasma exhibits corsider
non-neutrality (such as within sheaths). Neverthelessyithde shown below through some test cases, the ambipotan fo
does yield a much improved resolution on coarse meshes anebih necessitates significantly fewer grid points to @atéai
grid-independent solution.

To summarize, the “ambipolar form” of the governing equasiproposed herein consists of the potential equation found

from Ohm’s law Eq. (14), the recast ion conservation equdticluding Gauss's law Eq. (17), and the ambipolar form ef th
electron conservation equation Eq. (24). This set of eqoattan be written in general matrix form as follows:

ou d d U

3
=724 L uvy+eLuy- 2 (kY - 2
o T ax AV T EGL(BU) ax( ax) S (26)
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with R the residual vector which we seek to minimize - 0) and theU, S, Z, A, K, andB matrices equal to:

N, Wi—,bLiNifO(Ni—Ne) 1 0 0 0 0 0 ui 0 0
U=|N, S = W, Z=|0 1 0 A=|0 —u(E—-E) O B=|10 0 0
| ¢ 0 e —e 0 0 0 0 0 0 0
D, 0 0
K = §MeNeDi §MiNiDe 0
| eD, —eD, o
(27)

Through various numerical experiments performed in Se@&ibelow, the latter set of governing equations will be dest@ed

to be considerably easier to integrate than the standad#spite solving the same physical model and hence yieltmgame
converged solution (provided that the mesh is refined sefftty to minimize the numerical error). In fact, the impraovent

in convergence rate will be shown to be of one-hundred-folshore whenever the plasma includes both non-neutral sheath
and quasi-neutral regions. It may be argued that there heg wiays that the governing equations can be formulatedwloi
altering the physical model. In principle, it is possiblath formulation can be discovered that is even more conipuotdly
efficient than the one outlined above. We wish to point outyéager, that we did explore several other approaches: thoseg

to be either more difficult to integrate, or resulted in a ssurate solution on coarse meshes than the method propexsed.

5. Discretization of the Governing Equations

Noting that the residual for the conventional set of sheatregning equations (see Eq. (8)) has the same form as tliiadsi
for the proposed sets of sheath governing equations (sg@&cand (26)), we can express both sets of governing equsitio
discrete form as follows:

Ry = Z8,(U) +8,(AU) + ES8.(BU) — 6, (K8.(U)) = S (28)

where R, is the discretized residual which we seek to minimize, andr@b, () andd, () are some discretization operators
which vary depending on the term being discretized. Thereisdemporal derivative term, the discrete convectiom$g@and
the discrete diffusion term are given the following distzation stencils:

Z8U) =z, (%) (29)

b.(4v) = A2 A_X(AU)"*”Z (30)

E§,(BU) = (E/ +2 lezI) (<BU)f - iBU)”) N (Em/z - |E,.+,/2|) ((BU)i+1A; (BU),») 31)
5. k() = K Kesd WU U0 = (i £ K (U = Ui )

In the latter; denotes the grid index along and(z — At) refers to the properties at the previous time level.

In Eq. (30), the convective flux at the interface€l ), ;.. is determined from a Steger-Warming scheme [27] turnedskco
order accurate through an upwinded Van-Leer TVD limiter][28 determining the flux at the interface through the Steger
Warming scheme, the stencil can be simplified considerading that the convective flux Jacobiahis a diagonal matrix;
then, the left and right eigenvector matrices can be seteadintity matrix/, and the eigenvalue matrix set to the Jacobian
matrix A.

In Eqg. (31), the electric field at the interface is determifredh the potential as follows:

i1 — i

Ei+l/2 = _T (33)

When the electric field at a specific node is required, it idrined from the arithmetic average of the electric fieldthat
adjacent interfaces except when computing the Townserizbiton source terms where it is obtained from the minmodhef t
electric fields on the adjacent interfaces:

E minmod E;_,,», E;1+1,») when computing chemical source terms (34)
o % (Ei—ijo+ Eig1)2) otherwise
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with the minmod function returning the argument with the éstvmagnitude if both arguments have the same sign, andirgur
zero otherwise.

All the discretization stencils shown above are monotdyipreserving. That is, they will not introduce spuriousitia-
tions in the solution even in the vicinity of large gradieritss noted that the discrete terrids$, U andE§, (BU) use first-order
accurate stencils in contrast to the other terms whiclzetiecond-order accurate stencils. First-order steralstasen for
thetermsZ§,U andE§, (BU) because it is not clear how these stencils can be extendeddod-order accuracy while remain-
ing monotonicity-preserving and because the monotonjmigserving property is crucial in obtaining physicallyamingful
results of sheaths. Indeed, as will be shown below withirtékecases section, the electron and ion number densitiesgaca
by several orders of magnitude within a few nodes when sglgimeaths, and a scheme that is not monotonicity-preserving
would likely induce spurious oscillations that may resalniegative (and hence, aphysical) charge densities. Fusiéneral
grid convergence studies performed for steady-state @nablvill demonstrate that the use of a first-order stencitfferterm
ES,.(BU) is not a particular source of concern when solving sheatbaus® most of the numerical error originates from the
8,.(AU) ands, (K §, (U)) terms which use second-order stencils.

6. Pseudotime Relaxation of the Discretized Equations

To attain a converged solution, the discrete residual medliin Eq. (28) must be reduced to a small quantity at everg.nod
This is here accomplished through the use of pseudotimeatide combined with a block-implicit method. A block-ingit
pseudotime relaxation strategy is chosen because it ig@fierped relaxation technique in various compressibld filyinamics
and plasma aerodynamics codes (see NASA's OVERFLOW and DFidgles for instance or the recent papers in plasma
aerodynamics). Therefore, the convergence gains reploeiein are likely to be reproduced when the sheath equatidhe
existing codes are replaced by the sheath equations prbpotes paper.

Let us add for this purpose a pseudotime derivative to therefization equation.g. Eq. (28)) and rewrite in delta form:

YA"U + A"(Z8,U) + 8, A"(AU) + A"(ES,BU) — 8, A" (K8, U) — A"S = —R". (35)

In the latter, A" () = ()"*! — ()" with the superscript denoting the pseudotime level. As well,is a diagonal matrix related
to pseudotime relaxation:

1/(A7), 0 0
Y = 0 1/(AT). 0 (36)
0 0 1/(A7),

where(Ar);, (AT)., and(At), are the pseudotime steps for the ion conservation, electnagervation, and potential equations,
respectively.

Consider a relaxation process such that the diffusion métrithe convective flux Jacobiat, the electric fieldE, and the
matricesB, Y, andZ remain frozen from pseudotime leveto pseudotime level 4+ 1. The relaxed discretization equation to
solve at theth node then takes the form:

| E' |+ E" | 1 1
(Kt PR IR gy a4 ) aru (14 42

i=1/2 2Ax =1 2Ax At
n 1 n n |E?_1/2|+E;1—1/2+ |E;'+1/2|_E;1+1/2 n 1 n n
+EKZ»7]/2+EKI»+]/2—M[ + 2Ax Bj +B|A|,)A Ui (37)
1 n |Ein+1/2| - E;1+1/2 n 1 n 1 n n n
- (EKHH/Z + TAx By + EM i+1 EAFH) A"Uiyr = —(RRQ)i

In the latter, the matrix}/ corresponds to the source term Jacobian M = 05 /0U) but excluding the linearization of the
Townsend ionization terms. Excluding the Townsend iomraterms from the source term Jacobian results in a mordestab
relaxation hence permitting the use of higher pseudotieysdeading to faster convergence. Additionally, it is fdtimat faster
convergence is obtained by not including the second-osterd of the convection derivativg AU on the LHS of Eq. (37).
Not only would this require the inversion of a penta-diaganatrix instead of a tri-diagonal matrix, but this would @isften
lead to some convergence hangs caused by the flux limiter.

In solving Eq. (37), the electron and ion conservation equatare advanced in pseudotime in coupled form through a
block-TDMA (i.e. the tri-diagonal matrix algorithm is modified so that it imigea matrix whose elements &ex 2 matrices).
On the other hand, the potential equation is not integratembuipled form with the charged species conservation empsti
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but is rather relaxed through a scalar-TDMA once the ion dedimn densities have been updated. One pseudotim&adterat
hence consists of first finding the residual of the chargediep&onservation equations through Eq. (28), then upglatia
electron and ion densities in coupled form using Eq. (38ntfinding the residual of the potential equation through(28),
and then updating the potential equation using Eq. (37) h3uelaxation strategy is here chosen because it corresgond
the one generally employed in plasma solvers in which thetrtefield is obtained from the potential equation (thattise
potential equation and the fluid flow equations are solvedeoutively through separate methods).

The iteration process outlined above is repeated as longeasetsidual remains above a certain user-defined threshold.
When the magnitude of the residual of all nodes becomes tessthe user-defined threshold, the discretized equatiens a
considered converged and the iteration process stoppetnprove the rate of convergence, the pseudotime step iwedlo
to vary within the computational domaind. local pseudotime stepping). Through a trial-and-erroraggh, it is found that
optimal convergence rates are attained when the ion, ele@nd potential pseudotime steps atitthenode are set equal to:

Ax

A7), = CFL x 38
(&) Grer + MaX(|vili—1/2, |Vilig1/2) (38)

Ax
(At)e = CFL x (39)

res + /i) e X MAX(|Ve|i—1/2, [Velit1/2)
L. x Ax for the potential equation based on Gasisaw
A = A . . 40
(A7)s L. x al for the potential equation based on Obkraw (40)
Max(o;_1,2, Oi+1/2)

In the latter, the ion and electron “drift” velocities arefided as follows:

vi=w(E—E) and ve=—u(E —FE’) (42)

In Egs. (38)-(40), CFL is a non-dimensional user-definedmesterq,.; is a reference sound speed typically set to 300 m/s, and
L. is a user-defined length scale. The latter user-defined gteasnare constant throughout the computational domaia for
given pseudotime level, but may be varied as a function ofténation count to further improve the convergence ratestalls

on how the parameters CFL aiid are specified will be given for each test case in Section 8/belo

7. Boundary Conditions

At the interface between the plasma and a solid surface,dbadary conditions for the electron and ion humber derssitie
depend on the direction of the electric field. For this puepdsis convenient to consider a coordingtevhich is oriented
perpendicular to the surface and which points away fromtiniase. Then, when the electric field vector points away ftbhen
surface, the boundary conditions take the form:

I(NVe)
ox

On the other hand, when the electric field vector points tda#ne surface, the boundary conditions are specified a®gedp
in Ref. [14]:

=0 and N, =0 forE,>0 (42)

M) _ o and No= N forE, <0 (43)
ax e

In the latter,y is the secondary emission coefficieing( the ratio between the electron flux emanating from the saréad the
ion flux impinging the surface), anfl, is the component of the electric field along the coordinaté/e note that Eq. (43) is
intended to be applied on surfaces that do not reflect chamedes, such as electrodes or dielectrics that absorcaltiing
electrons and ions. Moreover, Eq. (43) can not be appliedrfaces for which thermionic emission is significant. Thader is
referred to Ref. [29] for boundary conditions at a surfae tkeflects all incoming electrons and to Refs. [16, 17] fanimbary
conditions at the cathode including thermionic emissiosing the cathode boundary conditions outlined in the |la¢firences
has been verified not to alter significantly the convergeatest when these boundary conditions are substituted tortbg
shown in Eq. (43), the gains in convergence rates exhibiyethé proposed method over the conventional approach remain
essentially the same.

When using the set of governing equations proposed hengiosing the anode boundary condition outlined in Eq. (48) ca
lead to some difficulties within the anode sheaté.(the sheath in the vicinity of an electrode with the eledigtd pointing
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away from the surface). The problem arises from the eleatomservation equation and the electric field potential Bqona

not depending significantly on the ion number density wheretlectron density largely exceeds the ion density, as isake
within anode sheaths close to the surface. Because of thisbacause Gauss's law is enforced through the solutioneof th
ion conservation equation, it follows that the distribatiof the electron density at the anode sheath boundary maghmeyt
Gauss's law. Put differently, because Gauss'’s law is eafbtiirough some source terms added to the ion transportieguat
and because these source terms scale with the ion densibeand vanish in flow regions where the ion density becomes zer
(see Eq. (17)), Gauss's law may not be satisfied in flow regidreye the ion density is zero, as is the case at the anode. For
this reason, it is necessary to rewrite the boundary canditr the electron number density at the anode to ensuré&tads’s

law is satisfied. This can be obtained starting from the d@&fimof the current density, Eq. (12), substitutifgfrom Eq. (21)
ando from Eg. (13), and noting tha¥, is zero at the anode. An expression is then obtained for tirermiat the anode:

J = epeNo(E — E/) (44)
Take the derivative with respect toof all terms, assuming constamng:

aJ N, oE oE’

0
e eE_E/ - eNe__ eNe_ 45

ax ehel )ax ten ax en 0x (45)
The last term on the RHS is negligible compared to the otti¢hg imagnitude of the divergence ff is less than the one of
E:

0E’ oE
‘ (46)

ax ax
Also, at steady-state, the divergence of the current vasiahd the LHS of Eq. (45) becomes 0. Then, isolate the dimeege
of the electric field within Gauss’s law Eq. (6) and subsétut Eq. (45) while settingv; to zero

N, e
0= epE — E) 28 — & N2 (47)
ox €

Recall the current at the anode, Eqg. (44), substitute inatier| and isolate the electron number density. We thusrotite
boundary conditions at the solid-plasma surfaces whereltfegric field points away from the surface:

B ( €oJ ON,

1
3
. ax) and N, =0 for E, >0 (48)

In deriving the latter from the standard anode boundary itimmdoutlined in Eq. (42), three assumptions are made:h@) t
current originating from a gradient of the electron mopilg assumed negligible compared to the other current cosmsn
(i) the problem is assumed at steady-state; and (iii) thgnitade of the divergence &’ is assumed less than the magnitude
of the divergence of (see condition (46)). While the first two assumptions areegally well justified, it is not clear whether
the third one would always be valid. For all test cases ptesemereafter, it is verified that condition (46) is satistedl that
the anode boundary condition shown in Eq. (48) is valid. Rbepproblem setups such as those involving multidimeradion
magnetic field effects, it is cautioned that the anode sheatindary condition shown above may need to be modified td yiel
the correct solution of Gauss’s law at the surface.

We can combine Eq. (48) with Eq. (43) to obtain a general esgioa for the ion and electron densities at a surface boyndar
that is valid on anode, cathode, and dielectric boundaFiesinstance, consider a boundary node denoted by the aduite
and juxtaposed to an inner node at+ 1”7, and another inner node at % 2”. Then, the discretized equations used to update
the charged species densities at the boundary node as @fuatthe properties at the nearby inner nodes can be wiiten

(Ne);l_H =aX (Ne)i + (1 —Ot)

Y X (N)ig1 X (&) if £,<0

e/ i+1/2 (49)

X 1/3
. Ji Ne i - Ne i .
min [ (N);r, max( (V)?, =20tz o (Ni+2 = (Ne)i s otherwise
! ez(Me)i+1/2 Xi42 — Xit1
0 if £,>0
(V)i = (50)

(N)i+1  otherwise

10
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whereFE, = minmod(¢; — ¢; 11, ¢:i11 — Pit2) /Ax. TO prevent convergence hangs, it is necessary to undecdted electron
density at the boundary by setting the relaxation factdo a value higher than zero and lower than one. Through tndl a
error it is found thatr should be given a value between 0.9 and 0.95 for optimal egewee. On the other hand, no relaxation
is necessary when updating the ion density at the boundagaue the relaxation factor vanishes from Eq. (49) when the
solution is converged (that is, whe¥y'*' — N.), the value given ta does not affect the converged solution. This is the case
not only for steady-state problems but also for time-adeupeoblems solved through a dual-time stepping approach.

The boundary nodes are updated after the ion and electrauitidsrare updated but before the residual of the potesstial i
determined. One iteration hence consists of, firstly, updahe ion and electron densities at the boundary nodes fihding
the residual of the potential equation, then updating therd@l, then finding the residual of the ion and electronsitess,
and, lastly, updating the ion and electron densities atrtherinodes. Further, we note that the use of the electrontdeis
the anode boundary shown in Eq. (48) is only necessary fqurihgosed governing equations. For the conventional gavgrn
equations, the electron number density at the anode isfiggbesing the standard approach as outlined in Eq. (42).

8. Test Cases

Several test cases are now considered to assess the perferwfahe proposed governing equations over the conveaition
governing equations in solving sheaths. In all cases, ttdiuneis a three-component air plasma including electroastrals,
and one type of positive ions. The electron and ion mobdliiee as specified in Table 1 while the chemical reactionsgaki
place within the plasma are listed in Table 2. In the chemiuadel used herein, the electron creation mechanisms aitedim
to Townsend ionizationi.g. electron impact ionization) and electron-beam ionizatighile the sole electron loss mechanism
consists of dissociative recombination. It is noted thatdchemical model does not include the various electron gairi@ss
mechanisms in air due to excited species because such aegpestted to play a significant role for the test cases coreide
Further, we do not expect these additional chemical reagtio affect significantly the convergence characteristig the
resolution capabilities of the methods.

TABLE 1.
lon and electron mobilities in afr.

Charged species Mobility, mV—.s™ Reference
Airt N-'-min (8.32~ 102/J/T, 2.13- 10'2/«/E*) [30]°
e N='-3.74-10" .exp(33.5/,/|n(Te)) [31, Ch. 21}

2 Notation and unitsT, is in Kelvin; T is in Kelvin; N is the total number density of the plasma in 1/mi* is the reduced electric field
(E* = |E|/N) in units of V-m?,

b The “air ion” mobility is obtained from the Nand G ion mobilities assuming a NOJ ratio of 4:1.

¢ The expression approximates the data given in Chapter 2&0f{&L]; The equation can be used in the range0 K < 7, < 57900 K
with a relative error on the mobility not exceeding 20%. la tange287 K < T, < 1000 K, the relative error is less than 30%.

TABLE 2.
lonization and recombination reactions taking place witnB-component ebeam-ionized air plasma.

No. Reaction Rate Coefficient References
1 e +AIr - Art +e +e exp(—0.0105031 - IN*E* —2.40983 - 1075 . In* E*) cm?/s [32, 33, 319
2 Air — e + Airt 1.84-10'7 - Q,/N 1/s [34]
3 e + Airt — Air 2.24-1077 - (300/ T,)°> + 0.4 - 1077 - (300/ T.)°7 cm?/s [35F

2 Notation and unitsT, is in Kelvin; T is in Kelvin; Q, is the electron beam power deposited in B/mV is the total number density of
the plasma in 1/ E* is the reduced electric field=* = |E|/N) in units of V-m>.

® The rate coefficient approximates the Townsend ionizatiesrgiven in [32] and in [33, p. 56] with the drift velocityken from [31,
Ch. 21]; The rate coefficient can be used in the rahged=° < E* < 240- 1072 V - m? with a relative error on the ionization rate not
exceeding 20%.

¢ The rate coefficient approximates the dissociative recoatlin reactionse+Nj — N+Nand e +0OF — O+ O assuming a §:0;
ratio of 4:1.

11
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FIGURE 1. Electron and ion density at steady-state obtained wifttimventional governing equations and the proposed gogpeguations
in ambipolar form. For the proposed governing equations,eivery 10 nodes is shown for cases #1 to #5 while 1 in every désis shown
for case #6. The grid is composed of 401 equally-spaced rfoded cases except for case #6 where it is composed of 1604llgespaced

nodes.
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As listed in Table 3, six air plasma test cases are considenetlich the air is ionized with electron beams. The first two
cases consist of a current-free plasma enclosed by diefeethile the other four cases consist of a plasma locatesddmsst
two electrodes. For all cases involving cathode sheatbagdgtstate solutions obtained with the numerical methosemted
herein have been verified to yield a current density, vol@dige, and sheath thickness in accordance to those giveneby th
one-dimensional cathode sheath theory outlined in [3380].1

The ion and electron densities at steady-state obtained tise proposed method can be seen in Fig. 1 to be essentially
identical to those obtained using the conventional apgroahis is not particularly surprising. After all, both sefsyoverning
equations are obtained from the same physical model, aydstimuld yield the same solution as long as the grid is refined
sufficiently and as long as the assumptions made in deriie@bode boundary condition remain valid. Indeed, it islkeda
that the boundary conditions associated with the propos#taeu differ from the conventional approach when an anodatsh
is present. Therefore, the fact that the present methodtsasiessentially the same solution as the conventionalcgmi in
the presence of an anode sheath (as in test cases #5 andid&desalthe boundary conditions outlined in Section 7, atléa
the one-dimensional steady-state problems here condidere

While the proposed governing equations yield essentiblysame solution as the conventional governing equatibeg, t
are considerably less stiff and can be integrated using rhigter pseudotime steps. For instance, in Table 4, we lést th
optimal relaxation parameters that give fastest convergémsteady-state. The conventional governing equati@nsastiff
that the CFL must be set to a value less than one for most tesscé&hould the CFL number be set to a higher value, the
solution would diverge towards aphysical states. The pgegaoverning equations, on the other hand, do not exhibit su
stiffness and permit the use of a CFL number that is typiaaily thousand times greater. A higher CFL number entailsteehig
pseudotime step, and this is turn leads to much faster cgemee to steady-state. In fact, as can be seen from Table 5, th
use of the proposed set of equations results in a remarkablhmusand-fold (or more) reduction in the number of tteres
necessary to obtain steady state for several of the test.case

We emphasize that the observed stiffness of the convehgbrath governing equations when solved with a block-icitpli
pseudotime relaxation procedure is not due to the dispphgteical time scales. This is well demonstrated througmthreeri-
cal results: when modeling sheaths involving quasi-nétggaons, the proposed set of equations does not exhibdiderable
stiffness (the time step is not restricted substantialljile the conventional set of equations exhibits significdiffness (the
time step size is subject to severe restrictions), despitie $ets of equations representing the same physical moddience
having the same disparate physical time scales. Obviotisystiffness associated with the conventional sheathrgog
equations does not originate from the physical time scalesather originates from the way the system of equationsrisifi-
lated. Specifically, the stiffness of the conventional goirey equations is here attributed to the electric field baibtained
from Gauss’s law rather than from Ohm'’s law, and from Gaussisentailing severe convergence difficulties. Obtainimg t
potential from Gauss’s law leads to a significant stiffndsbe system of equations because of its dependence atifteeence
between the ion and electron densities:

—€o V2 = e(N, — No) (51)

The difference between the electron and ion number dessiti@ quantity that is subject to considerable numericarevhen
the plasma is in the quasi-neutral state. This can be seamghthe relative error on the difference between the ioredgxtron

TABLE 3.
Problem setup for the various test cases.

Case Description Bulk properties Boundary conditions idhetonditions
L,cm P, bar N, 1/m? Qp, WIMm? Pr—0, V G, V N, 1/m* N, 1/m?
#1  Dielectric sheaths 1 0.1 2.414.10* 10° 0 0 100 100
#2  Dielectric sheaths 1 0.1 2.414-10* 10? 0 0 100 100
#3  Dark discharge 1 0.1 2.414-10* 10? 0 800 100 100
#4  Cathode sheath (low) 1 0.1 2.414-10* 10? 0 200 100 100
#5  Cathode sheath (high) 0.1 01 2.414-10% 10° 0 800 10 10
#6  Glow discharge 0.3 0.1 2.414-10* 2-10° 0 800 10'® 10'®

2 In all cases, the secondary emission coefficierg set to 0.1, the electron temperat(tds set to 20,000 K, the ion temperatufes set
to 300 K, and the initial potentia} is setto 0 V.
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TABLE 4.
Optimal relaxation parameters that yield fastest convergéo steady-state

Case Optimal relaxation parameters

Conventional governing equations Proposed governingtiemsa

CFL L., m o CFL L., m o
#1 10. 1000 0. 500 1000 0.9
#2 0.02 1000 0. 250 1000 0.9
#3 500. 1000 0. 500 1000 0.991
#4 0.04 1000 0.95 500 1000 0.9
#5 0.2 1000 0. 50 1000 0.9
#6 0.005 1000 0. 10 1000 0.9

2 A 100-node grid is used for cases #1 to #5 and a 200-node guiki for case #6.

TABLE 5.

Comparison of the proposed governing equations to the atiovel governing equations on the basis of number of i@matneeded to
reach steady-state*.

Governing equations Number of iterations needed to reach steady-state

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6
Conventional 4,701 1,934,000 25 947,000 3,117 1,380,000
Proposed (ambipolar form) 171 203 2,294 196 1,950 6,444

2@ For cases 1-4, steady-state is reached when the maximutiaésf the ion and electron densities falls belt®!/m3s. For cases 5 and
6, steady-state is reached when the maximum residual obtharid electron densities falls beld@'¢/m?3s.
® For cases #1 to #5, the grid is composed of 100 equally-spzmses. For case #6, the grid is composed of 200 equally-dpamtes.

¢ The CFL number, the relaxation facierand the characteristic length scéleare chosen such as to yield optimal convergence rates (see
Table 4).

densities, which can be shown to correspond to:

NE(N}) + N&E(Ne)

5(M—Ne): |N—N|

(52)

where the functiorf () here denotes the relative error of a certain quantity. Fstaimce, consider a quasi-neutral plasma for
which the ion density is within 0.1% of the electron denskEguation (52) yields an error on the difference betweendhe i
and electron densities a thousand times greater than thiecgrieither the ion number density or the electron numbesitien
Because of such an error amplification within the solutio@afiss’s law, the numerical error on the electron and ionitiesis
must be kept to a minimum as the solution progresses in psieueldl hus, large pseudotime steps can not be used whengolvi
either the ion or electron transport equations. Such aicgetr on the pseudotime step size could be bypassed thithegise

of an implicit relaxation scheme should the system of coratem laws be linear. However, when the system of consienvat
laws is non-linear (as is the case herein), an implicit raiax scheme would not prevent the error amplification tgrothe
solution of the potential obtained from Gauss’s law and wdwnce be subject to more or less the same pseudotime step
restrictions as an explicit scheme.

Further, we underscore that we are not solving here a setomiugted equations, but rather we are here solviegséenof
equationsi(e. a set of equations that are coupled to each other). In fastthie strong coupling between Gauss'’s law and the
electron and ion conservation equations that is at therogfjthe stiffness when the plasma is in the quasi-neutrés:sthe
small errors necessarily associated with the update obthei electron densities become amplified by the potentiadtgn
based on Gauss’s law, resulting in a large error in the piateiaind hence the electric field) at the next iteration, Wtitself
leads to a large error on the electron and ion densities dotlogving iteration because the latter depend on the atefigid.
This quickly leads to divergence towards aphysical statdsss extremely small time steps are used to integrate tget
species equations.

If the slow convergence of the conventional governing eiquatis in fact due to the error amplification within the pdtah
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FIGURE 2. Comparison between the proposed governing equatianprdposed governing equations in ambipolar form, and thessdional

governing equations on the basis of electron humber defwsitgst case #4 using a 50-node grid. The “exact” solutiarbisined using the
conventional governing equations and a 1600-node grid.
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FIGURE 3. Impact of the grid size on the potential contours for tesec#5. For the proposed governing equations using a 19¥mesdh,
one in every 4 nodes is shown. The “exact” solution is obtaumgng the conventional governing equations and a 320@-gad.

equation obtained from Gauss’s law, we would expect theeational governing equations to restrict the CFL numbeety v
small values when solving plasmas that include quasi-akrggions. We would also expect the restrictions on the @Rhet
relieved when the plasma does not include regions that apprine quasi-neutral state. As can be seen from Tables 4,and 5
this is precisely the behavior exhibited by the conventigiowerning equations. When solving plasmas that do notidel
quasi-neutral regions (test cases #1, #3 and #5), relatigh CFL numbers can be specified and this leads to conveegen
steady-state in less than a few thousand iterations. WHeimg@lasmas that do include a quasi-neutral region (tasés #2,

#4, and #6), it is necessary to reduce the CFL to much lowelegalThis in turn leads to very slow convergence to steaate-st

in one million iterations or more.

It may be argued that the convergence acceleration gaihg @resent method over the conventional approach are eldtain
at the expense of accuracy. Such is verified not to be the ¢dsash when the proposed governing equations are written in
ambipolar form. In fact, a comparison between the diffetgpés of governing equations (see Figs. 2, 3, and 4) revast she
proposed set of equations in ambipolar form yield an eleatiensity, potential, and current more or less as close texhet
solution as the conventional set of equations. Such is boradied by Tables 6 and 7 in which an assessment of the eelativ
error on the ion density and the potential is provided foresavmeshes: in all cases, no significant difference in wtisl
between the present method and the conventional approagipé&ent. This is verified to be the case within cathode begeat
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FIGURE 4. Total current density and current density componentsdst case #5 at steady-state: (a) comparison between thesea
governing equations in ambipolar form and the conventigoakrning equations on the basis of total current densityddous grids, and
(b) current density components obtained using the cormesitigoverning equations and a 3200-node grid — see definificthe current
density, Eqg. (12).

TABLE 6.
Relative error assessment in solving test case #4 at sttatip®

Governing equations Average relative error
1 L 1 L
Ni — Ni exac d.x / — Qexac d.x
LN ref A | ( ) I| L ¢ref [0) |¢ ¢ t|
25 nodes 100 nodes 400 nodes 25 nodes 100 nodes 400 nodes

Proposed 43.3% 12.3% 1.9% 1.26% 0.52% 0.049%
Proposed (ambipolar form) 6.3% 1.4% 0.25% 0.89% 0.18% 0033
Conventional 11.3% 1.6% 0.13% 1.36% 0.19% 0.015%

2 The “exact” solution is obtained using the conventionalegaing equations on a grid composed of 1600 equally-spacédesn
® The domain length is set to 1 cm, the reference ion numbeiitgieNs; is set to10'°/m?, and the reference potentigl; is set to 400 V.

anode sheaths, dielectric sheaths, and within quasi-aleagions.

Compared to the conventional set of equations, the proggseztning equations are significantly easier to integratabse
they allow the use of much higher CFL number. As is shown inddh the CFL number can be raised to values in excess
of 100 when using the proposed method. This in turn leads tabatantial reduction in the number of iterations to reach
steady-state. However, it is unlikely that such high CFL bens can be specified when the electron and ion conservation
equations are integrated in coupled form with the neutralsshmomentum, and energy transport equations. This isodue t
the fact that non-linear stability restrictions genergltgvent the CFL number to be raised to values significantlgertizan 1,
even when using an implicit pseudotime stepping method.rerage some flow regimes, however, for which this non-linear
stability restriction does not apply, such as when the Maghlver is sufficiently low that shocks are either not presehiwe
a relatively low pressure ratio, or when the diffusion datives predominate over the convection derivatives. Altuaturns
out that sheaths are expected to be located in such flow iegindeed, because sheaths occur near surfaces where bounda
layers are present, and because the sheath thicknessdallypnuch less than the boundary layer thickness, the flgions
where the sheath will be located are expected to be sucthihatutral gas is diffusion-dominated and has a low Mach mumb
It follows that, while we do not expect to be able to raise tié @ values exceeding 100 when solving more intricate @nwisl
such as compressible flows studded with high-strength sheek expect to be able to raise the CFL number to values well
exceeding 1 in the flow regions in which the sheaths are Idcate

Because it is likely that the CFL number may need to be redsigdficantly from the values used herein when solving
more complex problems, it is important to determine the iobplat a change in the CFL number has on the convergence
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TABLE 7.
Relative error assessment in solving test case #5 at sttati®

Governing equations Average relative error
1

1

L L
/ |N| - (Ni)exact| dX / |¢ - ¢exact| dX
0

LNref L¢ref 0
50 nodes 200 nodes 800 nodes 50 nodes 200 nodes 800 nodes
Proposed 15% 5.7% 1.4% 7.2% 1.9% 0.43%
Proposed (ambipolar form) 15% 5.7% 1.4% 7.2% 1.9% 0.43%
Conventional 14% 4.8% 1.1% 6.4% 1.7% 0.34%

2 The “exact” solution is obtained using the conventionalegaing equations on a grid composed of 3200 equally-spacéesn
® The domain length. is set to 0.1 cm, the reference ion number denaityis set to10'8/m?, and the reference potential; is set to
400 V.

7 (a) Case #4 (b) Case #6
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FIGURE 5. Impact of the CFL number on the convergence rate when tisengroposed governing equations in ambipolar form. A 16@en
grid is used for case #4 and a 200-node grid is used for casEhégrelaxation parametesisand L. are as specified in Table 4.

characteristics of the present method, and to determihe ietter would still yield an advantage over the converatiapproach
in the worst case scenariog, when the CFL is as low as 1). Interestingly, the CFL numbse&n to have a small impact on the
convergence rate when solving a high-current glow disahgngical of plasma aerodynamic applications (see Fig. Gn)the
other hand, the CFL number is seen to have a more pronoungeairon the convergence rate of the electron density rdsidua
when solving low-current cathode sheaths juxtaposed taaiqeutral region (see Fig. 5a). Nonetheless, for botes;asis
verified that the proposed governing equations are advadtager the conventional set of equations even for the lo@E&t
number considered: throughout the radge CFL < 500, the present method is seen to yield a reduction in compefiiogt
of at least one-hundred-fold and as much as ten-thousddd-fo

We now proceed to demonstrate through some test caseséhsttbf governing equations proposed herein yields benefits
over the conventional set of equations not only for steddtegroblems, but also for time-accurate problems. A tioedrate
solution is here obtained through dual-time stepping. Binaé stepping consists of adding the time derivative tordsidual
and of performing pseudotime iterations at each time lewtl the residual falls below a certain user-defined coneaog
threshold. A dual-time stepping approach is advantagedasigle-step implicit time stepping strategy by guaraimig that
the discrete equations are converged at each time levatehirareasing significantly the accuracy of the solutionw&d, a
dual-time stepping approach is advantaged over an expiioi stepping method by permitting the use of much higheetim
steps. This is particularly beneficial when solving sheatiblgems where large differences in time scales exist batwiee
chemical reactions, diffusion, and convection phenom#®éffzen using a time accurate dual-time stepping algorithnolzesa
glow discharge with a quasi-neutral positive column, theppised set of equations results in a reduction in compufing ef
30-100 times compared to the conventional set (see Tablh&) significant gain in convergence acceleration is oleinith
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FIGURE 6. Time accurate profiles of the ion and electron densitiesdse #6 obtained with the conventional governing equston the
proposed governing equations in ambipolar form. For bots segoverning equations, the grid is composed of 801 eguspihced nodes
and the time step is set to 0.5 microsecond. For the propasesiigng equations, 1 in every 20 nodes is shown.

TABLE 8.
Average number of iterations per time level when solvingec#s using a time accurate algorithiif.
Governing equations Average number of iterations per time level
200 nodes 400 nodes 800 nodes 1600 nodes
Conventional 36,000 85,800 183,000 357,200
Proposed (ambipolar form) 1,003 1,585 2,086 3,179

@ At each time level, the solution is considered convergedwthe maximum residual of the ion and electron densities Eslow10'°/m?s.

® The CFL number, the relaxation faciey and the characteristic length scélgare chosen such as to yield optimal convergence rates (see
Table 4).

¢ The average is taken over the first 20 time levels, with the siep size set equal to 0.5 microsecond.

essentially no penalty in resolution. In fact, the elecimod density contours obtained with each approach show nerdible
difference as long as the mesh is refined sufficiently to yaeiptid-independent solution (see Fig. 6). On coarser meghiss
verified that, similarly to steady-state problems, the agerelative error on the potential and the electron and émsities is
essentially unaffected when the proposed governing emnsétire solved instead of the conventional governing eopsti

9. Conclusions

To date, the numerical simulation of plasma sheaths usirgaseopic-scale transport equations has involved thelicaupf

the electric field potential equation obtained through Gauaw to the electron and ion transport equations obtaimedigh the
drift-diffusion model. When discretized using finite diféace stencils, this set of equations (referred hereine&tmventional
governing equations”) is particularly stiff and typicallgquires hundreds of thousands of iterations to reach cgexee
whenever a quasi-neutral region forms adjacent to the Bh&hts is attributed to the potential equation obtainedf@auss’s
law amplifying in quasi-neutral regions the numerical eassociated with the electron or ion densities. Becausedaf an
error amplification within the solution of Gauss’s law, themmerical error on the charged species densities must betdept
minimum as the solution progresses in pseudotime. Thuge lseudotime steps can not be used when solving eitherrthe io
or electron transport equations, and this in turn leads &xarssive number of iterations to reach convergence.

A new set of sheath governing equations is presented hetiis wch that the electric field is obtained from Ohm’s lavineait
than from Gauss’s law. To ensure that Gauss’s law is satjsftede source terms are added to the ion conservation equitio
doing so, the potential equation is not strongly dependeitie difference between the ion and electron number dessénd
this relieves the stiffness associated with its integratithe proposed governing equations are found throughaeest cases
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to result in a remarkable improvement in computational iefficy compared to the conventional set of equations. Thebeum
of iterations needed to reach convergence is typicallyegedwne-hundred-fold to ten-thousand-fold whenever aiqueasral
region is present within the plasma. This is confirmed to kectise not only for steady-state but also for time-accuchi#icns
of sheaths.

What makes the approach proposed herein particularly éipgésathat it does not sacrifice accuracy in favor of conesice
acceleration. For all test cases here considered, ingustieady-state and time-accurate simulations of dietestreaths,
cathode sheaths, anode sheaths, dark discharges, andigthardes, the present set of equations results in a solia is
essentially identical to the one obtained from the coneewli set as long as the mesh is refined sufficiently. When tred iise
coarse and the numerical error significant, the resolutkhibied by both approaches is more-or-less the same: erdigmtly
of the mesh size, the proposed governing equations are faugld a numerical error on the potential and the charged
species densities that does not exceed significantly theeximibited by the conventional governing equations. Yettlago
appeal of the present approach is that it can be used in attigarnwith any relaxation technique (such as block-implici
pseudotime relaxation, JFNK, LUSGS, multigrigic). That is, the use of the proposed governing equations isated to
yield considerably faster convergence also when usingnalte relaxation techniques, not only when using the bloghlicit
pseudotime relaxation technique as done herein.

It is cautioned that the method presented in this paper does dne disadvantage over the conventional approach.fSpeci
ically, because the potential equation is obtained from ®Haw and not from Gauss’s law, it is necessary to reforneulat
the boundary conditions at the anode in order to ensure thas€®s law is satisfied within the anode sheath. The reformu-
lated anode boundary condition is disadvantaged over #melatd approach by requiring a more substantial relaxafidine
electron density at the boundary. While this is generally problematic, it does lead to some relatively slow conveoge
when simulating dark discharges devoid of a quasi-newtabn. Furthermore, we note that while the newly formulatedde
boundary condition has been verified to yield the same sl the standard approach for all test cases consideigdpit
clear whether it would remain valid in more intricate prahleetups (such as when the sheath is multidimensional, wWigen t
sheath is affected by the magnetic field, or when the plasmadigeral types of ion species). Further investigationisbaec-
essary to extend the boundary conditions at the anode, aasmble governing equations proposed herein, to multicorapp
multidimensional, and magnetized plasmas.
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