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Sheath Governing Equations in Computational
Weakly-Ionized Plasmadynamics

Bernard Parent�, Mikhail N. Shneider�, and Sergey O. Macheret�

To date, fluid models of plasma sheaths have consisted of the coupling of the electric field po-
tential equation obtained through Gauss’s law to the charged species conservation equations
obtained through the drift-diffusion approximation. Whendiscretized using finite-difference
stencils, such a set of equations has been observed to be particularly stiff and to often require
more than hundreds of thousands of iterations to reach convergence. A new approach at solving
sheaths using a fluid model is here presented that reduces significantly the number of iterations to
reach convergence while not sacrificing on the accuracy of the converged solution. The method
proposed herein consists of rewriting the sheath governingequations such that the electric field
is obtained from Ohm’s law rather than from Gauss’s law. To ensure that Gauss’s law is satisfied,
some source terms are added to the ion conservation equation. Several time-accurate and steady-
state cases of dielectric sheaths, anode sheaths, and cathode sheaths (including glow and dark
discharges) are considered. The proposed method is seen to yield the same converged solution
as the conventional approach while exhibiting a reduction in computational effort varying be-
tween one-hundred-fold and ten-thousand-fold whenever the plasma includes both quasi-neutral
regions and non-neutral sheaths.

1. Introduction

I N PLASMADYNAMICS, a “sheath” refers to a plasma region that is located adjacent to surface boundaries and that is
significantly non-neutral. That is, a sheath always exhibits a substantial difference between its positive and negative charge

densities. Several different types of sheaths are recognized, depending on the type of boundary material and also depending on
the direction of the electric field near the surface. When theboundary is a dielectric, the electric field generally points towards
the surface. In such a case, the plasma near the dielectric has an excess of positive charge, is a few Debye lengths thick, and
is denoted as a “dielectric sheath”. When the boundary is an electrode and the electric field points away from the surface,the
plasma close to the electrode has an excess of negative charge and is denoted as an “anode sheath”. When the boundary is an
electrode and the electric field points towards the surface,the plasma close to the electrode has an excess of positive charge and
is denoted as a “cathode sheath”.

An accurate solution of the cathode sheath is generally crucial to predict correctly the current and electric field distribution
through the rest of the plasma. This follows from the plasma near the cathode being characterized by an electron number density
that is so low that the current in that region is mostly ionic rather than electronic. Because the ion mobility is substantially less
than the electron mobility, it is not uncommon for the conductivity in the vicinity of the cathode to be less than one thousandth
of the conductivity within the rest of the plasma. Such a low conductivity near the cathode results in a large voltage dropfor a
desired current, and this in turn leads to a large amount of power dissipated within the sheath in form of heat. Because of this,
accurately modeling sheaths is generally deemed essentialto assess adequately the performance of plasma-based devices such
as MHD generators and accelerators [1, 2], or plasma actuators [3, 4, 5].

Because the sheath thickness is typically very small compared to the size of the plasma, its accurate resolution may neces-
sitate a substantial refinement of the grid near the boundaries. To overcome this problem, the sheath and the plasma bulk can
be solved through independent methods and “patched” to eachother through some adequate boundary conditions [6, 7]. While
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the patching approach is advantaged by not requiring the sheath and the rest of the plasma to be solved in coupled form (hence
providing substantial savings in computational effort) itis questionable how well it can model more complex situations where
a strong coupling may occur, such as those involving motion of the neutrals and magnetic field effects.

To overcome the limitations of the patching method, a coupled solution of the plasma bulk and sheath is necessary. This
can be accomplished through a kinetic simulation [8], a particle-in-cell simulation [9], or through a fluid model [10, 11, 12].
Also known as the “drift-diffusion” model, the fluid model iscurrently the method of choice in simulating sheaths that would
occur within plasma aerodynamic applications (see for instance Refs. [13, 14, 15]). Indeed, when solving the relatively high
density flows typical of plasma aerodynamics problems, the more detailed physical models associated with kinetic simulations
or particle-in-cell simulations entail computing effortsthat are beyond the capabilities of present computers.

To date, fluid models of plasma sheaths have consisted of the coupling of the electric field potential obtained through Gauss’s
law to the electron and ion conservation equations obtainedthrough the drift-diffusion approximation. While such a strategy
has had considerable success, it suffers from very slow convergence when solving plasmas that include quasi-neutral regions.
When a quasi-neutral region forms within the plasma, the stiffness of the governing equations is such that typically onehundred
thousand iterations or more are needed to reach steady-state. Such slow convergence has been observed not only for explicit
relaxation schemes but also for fully-coupled implicit solvers. For this reason, quasi-neutral plasmas that do not include sheaths
are typically solved by obtaining the electric field from Ohm’s law rather than from Gauss’s law. The stiffness of the governing
equations is then relieved substantially and the computingeffort can be reduced one-hundred-fold or even more. Such a strategy
cannot be used for a plasma that includes non-neutral sheaths, however, because an electric field that is obtained from Ohm’s
law may not necessarily satisfy Gauss’s law, and because thecorrect solution of Gauss’s law is crucial to model the non-neutral
regions of the plasma correctly.

It is here argued that the last statement is not necessarily correct. That is, it is not mandatory to obtain the electric field
from Gauss’s law to ensure that the latter is satisfied. As will be demonstrated in this paper, it is possible to use Ohm’s law to
obtain the electric field within the non-neutral sheath regionswhile satisfying Gauss’s law. In so-doing, remarkable gains in
computational efficiency are realized when solving plasmasthat include both sheaths and quasi-neutral regions.

This paper does not constitute the first attempt at solving sheaths using Ohm’s law. For instance, in Refs. [16, 17, 18], a
thermionic cathode sheath is solved by determining the electric field from a form of Ohm’s law. The method outlined in the
latter references, however, does not ensure that Gauss’s law is satisfied and is hence only applicable to thermionic sheaths, and
not to cold cathode sheaths, dielectric sheaths, or anode sheaths. In contrast, we here propose a set of governing equations
that is such that the electric field is determined from Ohm’s law while ensuring that Gauss’s law is satisfied. The novel setof
governing equations proposed herein results in the same converged solution as the conventional set (in which the electric field is
determined directly through Gauss’s law) while yielding asmuch as a ten-thousand-fold reduction in computing effort.This is
attributed to the proposed governing equations being considerably less stiff and hence permitting the use of significantly larger
time steps when being integrated.

It is noted that a “stiff” system of equations here does not necessarily denote a system in which there is a large discrepancy
between the eigenvalues or the physical time scales. Rather, we here adopt Lambert’s definition of stiffness in the more general
sense [19, page 220] with a slight modification to make it applicable to non-linear systems of equations:

Definition If a numerical method, applied to a system with any initial conditions, is forced to use in a certain
interval of integration a steplength which is excessively small in relation to the smoothness of the exact solution in
that interval, then the system is said to bestiff in that interval.

When defined in this manner, stiffness is not an intrinsic property of the physical model: stiffness can originate from the
disparity between the physical time scales, but can also originate from other attributes of the system of equations (seeChapter
6 in Ref. [19]). For instance, when a physical model involvesseveral conservation laws dependent on each other, there ismore
than one way that the governing equations can be expressed, and the equations may exhibit more or less stiffness depending
on how they are written, despite solving the same physical model and sharing the same physical time scales. Rewriting the
governing equations differently while keeping the physical model the same was the strategy used to reduce the stiffnessof the
system associated with a quasi-neutral multicomponent plasma model in Ref. [20], with a currentless plasma model in Ref.
[21], and with a two-fluid Euler-Poisson plasma model in Ref.[22]. The methods outlined in the latter references, however,
can not be readily extended to the drift-diffusion model of sheaths. In this paper, we show that the stiffness of the system of
equations associated with the drift-diffusion model of sheaths can also be alleviated substantially through a recast in different
form, despite the recast set of equations solving the same physical model as the original set.
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2. Physical Model

The physical model considered herein determines the electron, ion, and neutral properties through macroscopic-scaletransport
equations (i.e. the so-called drift-diffusion model). Such can accuratelypredict using the same set of differential equations
both the non-neutral plasma sheaths and the quasi-neutral plasma bulk, including ambipolar diffusion and ambipolar drift
phenomena. It is emphasized that the physical model presented in this section is commonly used to model sheaths taking place
in weakly-ionized plasmas (plasmas with an ionization fraction less than10�4–10�3). For instance, in Refs. [5, 10, 11, 12,
13, 14, 15], the same physical model as used herein (or a slight variant) is used to solve sheaths occurring in glow discharges,
plasma aerodynamics, MHD generators,etc.

In a fluid model of plasmas, the conservation equation for each type of charged species can be expressed in general form as:

@Nk

@t
C @

@x
.NkVk/ D Wk (1)

whereNk is the number density,Wk represents the sources and sinks (e.g. due to ionization, recombination, attachment, and
detachment), andVk the charged species velocity including both drift and diffusion. Starting from the momentum equation of
an unmagnetized plasma in which the neutrals are at rest, an expression for the charged species velocity can be derived:

Vk D sk�kE � �kkBTk

jCkjNk

@Nk

@x
(2)

wheresk is the sign of the charge of the species under consideration (�1 for electrons,C1 for positive ions),Ck is the charge
of the ion or electron under consideration (equal to�e for the electrons andCe for the singly-charged positive ions),E the
electric field,Tk the temperature of the charged species,kB the Boltzmann constant, and�k the mobility of the charged species.

By substituting the charged species velocity from Eq. (2) into Eq. (1), we obtain the ion and electron conservation equations:
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where we defined the ion and electron diffusion coefficients using the Einstein-Smoluchowski relationship:

Di � �ikBTi

e
and De � �ekBTe

e
(5)

To close the system of equations, it is necessary to find an expression for the electric field. This can be obtained from Gauss’s
law:

@E

@x
D e

�0

.Ni � Ne/ (6)

with e the elementary charge and�0 the permittivity of free space.
In the physical model outlined above, the effects due to collisions between charged species, shear stresses, change of inertia,

multiple ion species, acceleration of the bulk of the plasma, as well as the effects of diffusion due to temperature gradients, are
ignored. This is not a source of concern as such effects are negligible in many weakly-ionized plasmas (see Ref. [23]). For
example, the Coulomb collisions can be ignored in virtuallyall glow and non-equilibrium RF discharges where the ionization
fraction is lower than10�4; one sort of ions often (albeit not always) dominates; the shear stresses can be demonstrated to be
orders of magnitude lower than the collision forces,etc. Furthermore, the proposed method can readily be modified to include
several of these effects. For instance, the collisions between charged species can be included simply by redefining the mobilities,
leaving all other equations the same (see Chapter 2 in Ref. [24]). Similarly, the motion of the neutrals can be incorporated by
adding the neutrals mass and momentum conservation equations. Nonetheless, we prefer not to do so in the present paper,
because this would not impact appreciably the solution while increasing the complexity of the physical model unnecessarily.
As well, we do not expect the addition of such effects to affect the gains in convergence acceleration obtained with the method
proposed hereafter.
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3. Conventional Sheath Governing Equations

The term “conventional governing equations” here denotes the set of partial differential equations that are generallyused to
solve the physical model outlined in the previous section. In the conventional set of governing equations, the electricfield
is determined from a form of the potential equation obtainedfrom Gauss’s law. This can be found starting from Eq. (6) and
assuming that a potential� exists such thatE D �@�=@x:

@2�

@x2
D � e

�0

.Ni � Ne/ (7)

The conventional governing equations hence consists of Eq.(7) and of the ion and electron conservation Eqs. (3)-(4). This can
be expressed in general matrix form as:

R D Z
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� S (8)

with R the residual vector which we seek to minimize (R ! 0) and theU , S , A, K, Z matrices equal to:
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The latter set of governing equations has been observed to beparticularly stiff and difficult to integrate whenever a quasi-neutral
region of substantial size appears within the solution. Forsuch problems, numerical experiments indicate that the maximum
time step that can be imposed on either the ion or electron conservation equation is limited by the CFL condition, even when
using an implicit scheme. Because of the high electron velocity, a time-step bounded by the CFL condition effectively results
in very slow convergence to steady-state, which is typically obtained after hundreds of thousands of iterations.

4. Proposed Sheath Governing Equations

To reduce the computational effort needed to solve plasmas that include both non-neutral and quasi-neutral regions, a new
method is presented here. The method proposed consists of obtaining the electric field potential from a form of Ohm’s law
instead of Gauss’s law. Then, to guarantee that Gauss’s law is satisfied both in the neutral and quasi-neutral regions, some
source terms are added to the ion conservation equation.

To yield a valid solution to the physical model presented in Section 2, the “Ohm’s law” must be derived from the charged
species conservation equations. This can be done by first subtracting the electron conservation equation (Eq. (4)) fromthe ion
conservation equation (Eq. (3)):

@
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Because charge cannot be created or destroyed through the chemical reactions, it follows that the ion chemical source term
cancels out the electron chemical source term.Wi � We D 0/. Further, after multiplying all terms by the elementary chargee,
we obtain:

@

@t
e.Ni � Ne/ C @J

@x
D 0 (11)

with the current density defined as:

J � �E � eDi

@Ni

@x
C eDe

@Ne

@x
(12)

and with the conductivity defined as:
� � e.�iNi C �eNe/ (13)

Equation (12) is commonly referred to as Ohm’s “law”. It is pointed out that the form of Ohm’s law presented in Eq. (12) and
the conductivity presented in Eq. (13) are only applicable to the physical model outlined in Section 2. For a different physical
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model, Ohm’s law and the conductivity would take on different forms (see Ref. [23] for details). Further, should a potential �

exists such thatE D �@�=@x, Eq. (11) becomes:
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This completes our derivation of the potential equation based on Ohm’s law. Because the latter is obtained solely from the
ion and electron conservation equations, Eq. (14) is redundant. Indeed, the solution of Eq. (14) is guaranteed providedthat
the ion and electron conservation equations are solved. Alternately, the solution of the ion conservation equation is guaranteed
provided that Eq. (14) and the electron conservation equation are solved. Because there are three unknowns (Ni, Ne, andE), it is
hence necessary to find a third independent equation. This can be obtained by adding some source terms to the ion conservation
equation to make sure that Gauss’s law is enforced. For this purpose, recall the standard form of the ion conservation equation,
Eq. (3):
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Split the last derivative on the LHS:
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But recall Gauss’s law, Eq. (6), and substitute in the latter:
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We now have 3 independent equations for three unknowns: (i) the newly-recast ion conservation equation including source
terms to impose Gauss’s law, Eq. (17), (ii) the electron conservation equation, Eq. (4), and (iii) the potential equation based on
Ohm’s law, Eq. (14). This set of equations can be written in general matrix form as follows:

R D Z
@U

@t
C @

@x
.AU / C E

@

@x
.BU / � @

@x

�

K
@U

@x

�

� S (18)

with R the residual vector which we seek to minimize (R ! 0) and theU , S , Z, A, K, andB matrices equal to:
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Because the latter set of equations does not obtain the potential from Gauss’s law, it is considerably less stiff and easier to
integrate in the quasi-neutral limit than the standard set of sheath equations. The reasons for this will be discussed inSection
8 below. A similar strategy was employed in a previous paper by Crispelet al. [22] where the stiffness of the Euler-Poisson
equations was alleviated by rewriting the set of equations such that the potential is not obtained from Gauss’s law directly, but
obtained from a different Poisson equation that is easier tointegrate. However, the approach presented herein differsfrom the
one outlined in Ref. [22] by being applicable to the drift-diffusion model rather than the Euler-Poisson model. Further, as will
be shown below through numerous test cases, while such a recast of the equations relieves the stiffness of the system, it suffers
from not exhibiting as high a resolution as the standard set of equations when solving sheaths (a higher resolution here implies
a smaller numerical error on coarse meshes). This issue is now addressed by rewriting the electron conservation equation in
“ambipolar form”.

4.1. Ambipolar Form

The set of governing equations proposed in Eqs. (18)-(19) can be further improved by recasting the electron conservation
equation in terms of drift and ambipolar diffusion terms. Aswas shown in Ref. [20], there is a computational advantage
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in doing so: when written in ambipolar form, the charged species transport equations depend less strongly on the potential
equation, and this leads to a beneficial reduction of the coupling between the potential and the electron and ion densities. To
yield a computational advantage, however, the ambipolar diffusion terms must be written such that they do not depend on the
electric field. Further, this needs to be accomplished whilenot altering the physical model shown above in Section 2. Forthese
reasons, we follow Ref. [20] in which an approach is presented to obtain an exact solution to the ambipolar diffusion coefficient
which is free of the electric field. This is in contrast to the ambipolar diffusion method proposed in Refs. [25, 26] which either
yields an ambipolar diffusion coefficient function of the electric field, or alters the physical model through an approximate
expression for the electric field found within the ambipolardiffusion terms.

Thus, following Ref. [20], we can derive the “ambipolar form” of the electron conservation equation from the physical
model as follows. Let us first defineE 0 as the component of the electric field that cancels out the component of the current
originating from mass diffusion of the charged species (seethe current components in Eq. (12)):

�E 0 � eDi
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@x
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Recall the electron conservation equation, Eq. (4), and addand subtractE 0 to the electric field as follows:
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Then, let us substituteE 0 from Eq. (21) in the latter and regroup similar terms together:
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But recall the definition of the conductivity from Eq. (13),� D e.�iNi C �eNe/. Then the last term on the LHS simplifies and
the electron conservation equation becomes:
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The latter is the “ambipolar form” of the electron conservation equation. Indeed, noting that the ion mobility is much less than
the electron mobility, it can be easily shown that the diffusion terms in Eq. (24) will collapse to the well-known ambipolar
diffusion term for a three-component quasi-neutral plasma(see for instance Ref. [20]):
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We emphasize that the newly derived ambipolar form of the electron conservation equation is obtained from the physical model
without making any approximation. Because of this, whetherthe standard form Eq. (4) or the ambipolar form Eq. (24) of the
electron conservation equation is solved, the solution obtained will be essentially the same provided enough grid points are used
to minimize the numerical error. This is true when the plasmais quasi-neutral but also when the plasma exhibits considerable
non-neutrality (such as within sheaths). Nevertheless, aswill be shown below through some test cases, the ambipolar form
does yield a much improved resolution on coarse meshes and thereby necessitates significantly fewer grid points to attain a
grid-independent solution.

To summarize, the “ambipolar form” of the governing equations proposed herein consists of the potential equation found
from Ohm’s law Eq. (14), the recast ion conservation equation including Gauss’s law Eq. (17), and the ambipolar form of the
electron conservation equation Eq. (24). This set of equations can be written in general matrix form as follows:
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with R the residual vector which we seek to minimize (R ! 0) and theU , S , Z, A, K, andB matrices equal to:
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Through various numerical experiments performed in Section 8 below, the latter set of governing equations will be demonstrated
to be considerably easier to integrate than the standard setdespite solving the same physical model and hence yielding the same
converged solution (provided that the mesh is refined sufficiently to minimize the numerical error). In fact, the improvement
in convergence rate will be shown to be of one-hundred-fold or more whenever the plasma includes both non-neutral sheaths
and quasi-neutral regions. It may be argued that there are other ways that the governing equations can be formulated while not
altering the physical model. In principle, it is possible that a formulation can be discovered that is even more computationally
efficient than the one outlined above. We wish to point out, however, that we did explore several other approaches: those proved
to be either more difficult to integrate, or resulted in a lessaccurate solution on coarse meshes than the method proposedherein.

5. Discretization of the Governing Equations

Noting that the residual for the conventional set of sheath governing equations (see Eq. (8)) has the same form as the residual
for the proposed sets of sheath governing equations (see Eq.(18) and (26)), we can express both sets of governing equations in
discrete form as follows:

R� D Zıt.U / C ıx.AU / C Eıx.BU / � ıx .Kıx.U // � S (28)

whereR� is the discretized residual which we seek to minimize, and whereıx./ andıt./ are some discretization operators
which vary depending on the term being discretized. The discrete temporal derivative term, the discrete convection terms, and
the discrete diffusion term are given the following discretization stencils:
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In the latter,i denotes the grid index alongx, and.t � �t/ refers to the properties at the previous time level.
In Eq. (30), the convective flux at the interface.AU /iC1=2 is determined from a Steger-Warming scheme [27] turned second-

order accurate through an upwinded Van-Leer TVD limiter [28]. In determining the flux at the interface through the Steger-
Warming scheme, the stencil can be simplified considerably noting that the convective flux JacobianA is a diagonal matrix;
then, the left and right eigenvector matrices can be set to the identity matrixI , and the eigenvalue matrix set to the Jacobian
matrixA.

In Eq. (31), the electric field at the interface is determinedfrom the potential as follows:

EiC1=2 D ��iC1 � �i

�x
(33)

When the electric field at a specific node is required, it is determined from the arithmetic average of the electric fields atthe
adjacent interfaces except when computing the Townsend ionization source terms where it is obtained from the minmod of the
electric fields on the adjacent interfaces:

Ei D
(

minmod.Ei�1=2; EiC1=2/ when computing chemical source terms
1

2
.Ei�1=2 C EiC1=2/ otherwise

(34)
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with the minmod function returning the argument with the lowest magnitude if both arguments have the same sign, and returning
zero otherwise.

All the discretization stencils shown above are monotonicity-preserving. That is, they will not introduce spurious oscilla-
tions in the solution even in the vicinity of large gradients. It is noted that the discrete termsZıtU andEıx.BU / use first-order
accurate stencils in contrast to the other terms which utilize second-order accurate stencils. First-order stencils are chosen for
the termsZıtU andEıx.BU / because it is not clear how these stencils can be extended to second-order accuracy while remain-
ing monotonicity-preserving and because the monotonicity-preserving property is crucial in obtaining physically-meaningful
results of sheaths. Indeed, as will be shown below within thetest cases section, the electron and ion number densities can vary
by several orders of magnitude within a few nodes when solving sheaths, and a scheme that is not monotonicity-preserving
would likely induce spurious oscillations that may result in negative (and hence, aphysical) charge densities. Further, several
grid convergence studies performed for steady-state problems will demonstrate that the use of a first-order stencil forthe term
Eıx.BU / is not a particular source of concern when solving sheaths because most of the numerical error originates from the
ıx.AU / andıx.Kıx.U // terms which use second-order stencils.

6. Pseudotime Relaxation of the Discretized Equations

To attain a converged solution, the discrete residual outlined in Eq. (28) must be reduced to a small quantity at every node.
This is here accomplished through the use of pseudotime relaxation combined with a block-implicit method. A block-implicit
pseudotime relaxation strategy is chosen because it is the preferred relaxation technique in various compressible fluid dynamics
and plasma aerodynamics codes (see NASA’s OVERFLOW and CFL3D codes for instance or the recent papers in plasma
aerodynamics). Therefore, the convergence gains reportedherein are likely to be reproduced when the sheath equationsin the
existing codes are replaced by the sheath equations proposed in this paper.

Let us add for this purpose a pseudotime derivative to the discretization equation (i.e. Eq. (28)) and rewrite in delta form:

Y�nU C �n.ZıtU / C ıx�n.AU / C �n.EıxBU / � ıx�n .KıxU / � �nS D �Rn

�
(35)

In the latter,�n./ � ./nC1 � ./n with the superscriptn denoting the pseudotime level. As well,Y is a diagonal matrix related
to pseudotime relaxation:

Y D

2

6

4

1=.��/i 0 0

0 1=.��/e 0

0 0 1=.��/�

3

7

5
(36)

where.��/i, .��/e, and.��/� are the pseudotime steps for the ion conservation, electronconservation, and potential equations,
respectively.

Consider a relaxation process such that the diffusion matrix K, the convective flux JacobianA, the electric fieldE, and the
matricesB, Y , andZ remain frozen from pseudotime leveln to pseudotime leveln C 1. The relaxed discretization equation to
solve at thei th node then takes the form:

�
�

1

�x2
Kn

i�1=2
C

jEn

i�1=2
j C En

i�1=2

2�x
Bn

i�1
C 1

2�x
jAjn

i�1
C 1

2�x
An

i�1

�

�nUi�1 C
�

Y n

i
C 1

�t
Zn

i

C 1

�x2
Kn

i�1=2
C 1

�x2
Kn

iC1=2
� M n

i
C

jEn

i�1=2
j C En

i�1=2
C jEn

iC1=2
j � En

iC1=2

2�x
Bn

i
C 1

�x
jAjn

i

�

�nUi

�
�

1

�x2
Kn

iC1=2
C

jEn

iC1=2
j � En

iC1=2

2�x
Bn

iC1
C 1

2�x
jAjn

iC1
� 1

2�x
An

iC1

�

�nUiC1 D �.Rn

�
/i

(37)

In the latter, the matrixM corresponds to the source term Jacobian (i.e. M � @S=@U ) but excluding the linearization of the
Townsend ionization terms. Excluding the Townsend ionization terms from the source term Jacobian results in a more stable
relaxation hence permitting the use of higher pseudotime steps leading to faster convergence. Additionally, it is found that faster
convergence is obtained by not including the second-order terms of the convection derivativeıxAU on the LHS of Eq. (37).
Not only would this require the inversion of a penta-diagonal matrix instead of a tri-diagonal matrix, but this would also often
lead to some convergence hangs caused by the flux limiter.

In solving Eq. (37), the electron and ion conservation equations are advanced in pseudotime in coupled form through a
block-TDMA (i.e. the tri-diagonal matrix algorithm is modified so that it inverts a matrix whose elements are2 � 2 matrices).
On the other hand, the potential equation is not integrated in coupled form with the charged species conservation equations,
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but is rather relaxed through a scalar-TDMA once the ion and electron densities have been updated. One pseudotime iteration
hence consists of first finding the residual of the charged species conservation equations through Eq. (28), then updating the
electron and ion densities in coupled form using Eq. (37), then finding the residual of the potential equation through Eq.(28),
and then updating the potential equation using Eq. (37). Such a relaxation strategy is here chosen because it corresponds to
the one generally employed in plasma solvers in which the electric field is obtained from the potential equation (that is,the
potential equation and the fluid flow equations are solved consecutively through separate methods).

The iteration process outlined above is repeated as long as the residual remains above a certain user-defined threshold.
When the magnitude of the residual of all nodes becomes less than the user-defined threshold, the discretized equations are
considered converged and the iteration process stopped. Toimprove the rate of convergence, the pseudotime step is allowed
to vary within the computational domain (i.e. local pseudotime stepping). Through a trial-and-error approach, it is found that
optimal convergence rates are attained when the ion, electron, and potential pseudotime steps at thei th node are set equal to:

.��/i D CFL � �x

aref C max.jviji�1=2; jvijiC1=2/
(38)

.��/e D CFL � �x

aref C
p

�i=�e � max.jveji�1=2; jvejiC1=2/
(39)

.��/� D

8

<

:

Lc � �x for the potential equation based on Gauss0s law

Lc � �x

max.�i�1=2; �iC1=2/
for the potential equation based on Ohm0s law

(40)

In the latter, the ion and electron “drift” velocities are defined as follows:

vi � �i.E � E 0/ and ve � ��e.E � E 0/ (41)

In Eqs. (38)-(40), CFL is a non-dimensional user-defined parameter,aref is a reference sound speed typically set to 300 m/s, and
Lc is a user-defined length scale. The latter user-defined parameters are constant throughout the computational domain fora
given pseudotime level, but may be varied as a function of theiteration count to further improve the convergence rates. Details
on how the parameters CFL andLc are specified will be given for each test case in Section 8 below.

7. Boundary Conditions

At the interface between the plasma and a solid surface, the boundary conditions for the electron and ion number densities
depend on the direction of the electric field. For this purpose, it is convenient to consider a coordinate� which is oriented
perpendicular to the surface and which points away from the surface. Then, when the electric field vector points away fromthe
surface, the boundary conditions take the form:

@.NeVe/

@x
D 0 and Ni D 0 for E� > 0 (42)

On the other hand, when the electric field vector points towards the surface, the boundary conditions are specified as proposed
in Ref. [14]:

@.NiVi/

@x
D 0 and Ne D 
Ni

�i

�e

for E� < 0 (43)

In the latter,
 is the secondary emission coefficient (i.e., the ratio between the electron flux emanating from the surface and the
ion flux impinging the surface), andE� is the component of the electric field along the coordinate�. We note that Eq. (43) is
intended to be applied on surfaces that do not reflect chargedspecies, such as electrodes or dielectrics that absorb all incoming
electrons and ions. Moreover, Eq. (43) can not be applied to surfaces for which thermionic emission is significant. The reader is
referred to Ref. [29] for boundary conditions at a surface that reflects all incoming electrons and to Refs. [16, 17] for boundary
conditions at the cathode including thermionic emission. Using the cathode boundary conditions outlined in the latterreferences
has been verified not to alter significantly the convergence rates: when these boundary conditions are substituted to theones
shown in Eq. (43), the gains in convergence rates exhibited by the proposed method over the conventional approach remain
essentially the same.

When using the set of governing equations proposed herein, imposing the anode boundary condition outlined in Eq. (42) can
lead to some difficulties within the anode sheath (i.e., the sheath in the vicinity of an electrode with the electricfield pointing

9
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away from the surface). The problem arises from the electronconservation equation and the electric field potential equation
not depending significantly on the ion number density when the electron density largely exceeds the ion density, as is thecase
within anode sheaths close to the surface. Because of this, and because Gauss’s law is enforced through the solution of the
ion conservation equation, it follows that the distribution of the electron density at the anode sheath boundary may notobey
Gauss’s law. Put differently, because Gauss’s law is enforced through some source terms added to the ion transport equation,
and because these source terms scale with the ion density andhence vanish in flow regions where the ion density becomes zero
(see Eq. (17)), Gauss’s law may not be satisfied in flow regionswhere the ion density is zero, as is the case at the anode. For
this reason, it is necessary to rewrite the boundary condition for the electron number density at the anode to ensure thatGauss’s
law is satisfied. This can be obtained starting from the definition of the current density, Eq. (12), substitutingE 0 from Eq. (21)
and� from Eq. (13), and noting thatNi is zero at the anode. An expression is then obtained for the current at the anode:

J D e�eNe.E � E 0/ (44)

Take the derivative with respect tox of all terms, assuming constant�e:

@J

@x
D e�e.E � E 0/

@Ne

@x
C e�eNe

@E

@x
� e�eNe

@E 0

@x
(45)

The last term on the RHS is negligible compared to the others if the magnitude of the divergence ofE 0 is less than the one of
E:

ˇ

ˇ

ˇ

ˇ

@E 0

@x

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

@E

@x

ˇ

ˇ

ˇ

ˇ

(46)

Also, at steady-state, the divergence of the current vanishes and the LHS of Eq. (45) becomes 0. Then, isolate the divergence
of the electric field within Gauss’s law Eq. (6) and substitute in Eq. (45) while settingNi to zero

0 D e�e.E � E 0/
@Ne

@x
� e2

�0

�eN
2

e (47)

Recall the current at the anode, Eq. (44), substitute in the latter, and isolate the electron number density. We thus obtain the
boundary conditions at the solid-plasma surfaces where theelectric field points away from the surface:

Ne D
�

�0J

e2�e

@Ne

@x

�
1
3

and Ni D 0 for E� > 0 (48)

In deriving the latter from the standard anode boundary condition outlined in Eq. (42), three assumptions are made: (i) the
current originating from a gradient of the electron mobility is assumed negligible compared to the other current components;
(ii) the problem is assumed at steady-state; and (iii) the magnitude of the divergence ofE 0 is assumed less than the magnitude
of the divergence ofE (see condition (46)). While the first two assumptions are generally well justified, it is not clear whether
the third one would always be valid. For all test cases presented hereafter, it is verified that condition (46) is satisfiedand that
the anode boundary condition shown in Eq. (48) is valid. For other problem setups such as those involving multidimensional or
magnetic field effects, it is cautioned that the anode sheathboundary condition shown above may need to be modified to yield
the correct solution of Gauss’s law at the surface.

We can combine Eq. (48) with Eq. (43) to obtain a general expression for the ion and electron densities at a surface boundary
that is valid on anode, cathode, and dielectric boundaries.For instance, consider a boundary node denoted by the counter “ i ”
and juxtaposed to an inner node at “i C 1”, and another inner node at “i C 2”. Then, the discretized equations used to update
the charged species densities at the boundary node as a function of the properties at the nearby inner nodes can be writtenas:

.Ne/
nC1

i
D ˛ � .Ne/i C .1 � ˛/

�

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:


 � .Ni/iC1 �
�

�i

�e

�

iC1=2

if E� < 0

min

 

.Ne/iC1; max

�

.Ni/
3

i
;

�0JiC1=2

e2.�e/iC1=2

� .Ne/iC2 � .Ne/iC1

xiC2 � xiC1

�1=3
!

otherwise

(49)

.Ni/
nC1

i
D

8

<

:

0 if E� > 0

.Ni/iC1 otherwise
(50)
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whereE� D minmod.�i � �iC1; �iC1 � �iC2/ =�x. To prevent convergence hangs, it is necessary to under-relax the electron
density at the boundary by setting the relaxation factor˛ to a value higher than zero and lower than one. Through trial and
error it is found that̨ should be given a value between 0.9 and 0.95 for optimal convergence. On the other hand, no relaxation
is necessary when updating the ion density at the boundary. Because the relaxation factor vanishes from Eq. (49) when the
solution is converged (that is, whenN nC1

e ! Ne), the value given tǫ does not affect the converged solution. This is the case
not only for steady-state problems but also for time-accurate problems solved through a dual-time stepping approach.

The boundary nodes are updated after the ion and electron densities are updated but before the residual of the potential is
determined. One iteration hence consists of, firstly, updating the ion and electron densities at the boundary nodes, then finding
the residual of the potential equation, then updating the potential, then finding the residual of the ion and electron densities,
and, lastly, updating the ion and electron densities at the inner nodes. Further, we note that the use of the electron density at
the anode boundary shown in Eq. (48) is only necessary for theproposed governing equations. For the conventional governing
equations, the electron number density at the anode is specified using the standard approach as outlined in Eq. (42).

8. Test Cases

Several test cases are now considered to assess the performance of the proposed governing equations over the conventional
governing equations in solving sheaths. In all cases, the medium is a three-component air plasma including electrons, neutrals,
and one type of positive ions. The electron and ion mobilities are as specified in Table 1 while the chemical reactions taking
place within the plasma are listed in Table 2. In the chemicalmodel used herein, the electron creation mechanisms are limited
to Townsend ionization (i.e. electron impact ionization) and electron-beam ionization, while the sole electron loss mechanism
consists of dissociative recombination. It is noted that the chemical model does not include the various electron gain and loss
mechanisms in air due to excited species because such are notexpected to play a significant role for the test cases considered.
Further, we do not expect these additional chemical reactions to affect significantly the convergence characteristicsand the
resolution capabilities of the methods.

TABLE 1.
Ion and electron mobilities in air.a

Charged species Mobility, m2 � V�1 � s�1 Reference

Air C N �1 � min
�

8:32 � 1022=
p

T ; 2:13 � 1012=
p

E?

�

[30]b

e� N �1 � 3:74 � 1019 � exp
�

33:5=
p

ln.Te/
�

[31, Ch. 21]c

a Notation and units:Te is in Kelvin; T is in Kelvin; N is the total number density of the plasma in 1/m3; E? is the reduced electric field
(E? D jEj=N ) in units of V�m2.

b The “air ion” mobility is obtained from the NC2 and OC

2 ion mobilities assuming a NC2 :OC

2 ratio of 4:1.
c The expression approximates the data given in Chapter 21 of Ref. [31]; The equation can be used in the range1000 K � Te � 57900 K

with a relative error on the mobility not exceeding 20%. In the range287 K � Te < 1000 K, the relative error is less than 30%.

TABLE 2.
Ionization and recombination reactions taking place within a 3-component ebeam-ionized air plasma.

No. Reaction Rate Coefficienta References

1 e� C Air ! Air C C e� C e� exp.�0:0105031 � ln2
E? � 2:40983 � 10�75 � ln46

E?/ cm3/s [32, 33, 31]b

2 Air ! e� C Air C 1:84 � 1017 � Qb=N 1/s [34]
3 e� C Air C ! Air 2:24 � 10�7 � .300=Te/

0:5 C 0:4 � 10�7 � .300=Te/
0:7 cm3/s [35]c

a Notation and units:Te is in Kelvin; T is in Kelvin; Qb is the electron beam power deposited in W/m3; N is the total number density of
the plasma in 1/m3; E? is the reduced electric field (E? � jEj=N ) in units of V�m2.

b The rate coefficient approximates the Townsend ionization rates given in [32] and in [33, p. 56] with the drift velocity taken from [31,
Ch. 21]; The rate coefficient can be used in the range3 � 10�20 � E? � 240 � 10�20 V � m2 with a relative error on the ionization rate not
exceeding 20%.

c The rate coefficient approximates the dissociative recombination reactions e� CNC

2 ! NCN and e� COC

2 ! OCO assuming a NC2 :OC

2

ratio of 4:1.
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FIGURE 1. Electron and ion density at steady-state obtained with the conventional governing equations and the proposed governing equations
in ambipolar form. For the proposed governing equations, 1 in every 10 nodes is shown for cases #1 to #5 while 1 in every 40 nodes is shown
for case #6. The grid is composed of 401 equally-spaced nodesfor all cases except for case #6 where it is composed of 1601 equally-spaced
nodes.
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As listed in Table 3, six air plasma test cases are consideredin which the air is ionized with electron beams. The first two
cases consist of a current-free plasma enclosed by dielectrics while the other four cases consist of a plasma located between
two electrodes. For all cases involving cathode sheaths, steady state solutions obtained with the numerical method presented
herein have been verified to yield a current density, voltagedrop, and sheath thickness in accordance to those given by the
one-dimensional cathode sheath theory outlined in [33, p. 180].

The ion and electron densities at steady-state obtained using the proposed method can be seen in Fig. 1 to be essentially
identical to those obtained using the conventional approach. This is not particularly surprising. After all, both setsof governing
equations are obtained from the same physical model, and they should yield the same solution as long as the grid is refined
sufficiently and as long as the assumptions made in deriving the anode boundary condition remain valid. Indeed, it is recalled
that the boundary conditions associated with the proposed method differ from the conventional approach when an anode sheath
is present. Therefore, the fact that the present method results in essentially the same solution as the conventional approach in
the presence of an anode sheath (as in test cases #5 and #6) validates the boundary conditions outlined in Section 7, at least for
the one-dimensional steady-state problems here considered.

While the proposed governing equations yield essentially the same solution as the conventional governing equations, they
are considerably less stiff and can be integrated using muchhigher pseudotime steps. For instance, in Table 4, we list the
optimal relaxation parameters that give fastest convergence to steady-state. The conventional governing equations are so stiff
that the CFL must be set to a value less than one for most test cases. Should the CFL number be set to a higher value, the
solution would diverge towards aphysical states. The proposed governing equations, on the other hand, do not exhibit such
stiffness and permit the use of a CFL number that is typicallyone thousand times greater. A higher CFL number entails a higher
pseudotime step, and this is turn leads to much faster convergence to steady-state. In fact, as can be seen from Table 5, the
use of the proposed set of equations results in a remarkable one-thousand-fold (or more) reduction in the number of iterations
necessary to obtain steady state for several of the test cases.

We emphasize that the observed stiffness of the conventional sheath governing equations when solved with a block-implicit
pseudotime relaxation procedure is not due to the disparatephysical time scales. This is well demonstrated through thenumeri-
cal results: when modeling sheaths involving quasi-neutral regions, the proposed set of equations does not exhibit considerable
stiffness (the time step is not restricted substantially),while the conventional set of equations exhibits significant stiffness (the
time step size is subject to severe restrictions), despite both sets of equations representing the same physical model and hence
having the same disparate physical time scales. Obviously,the stiffness associated with the conventional sheath governing
equations does not originate from the physical time scales but rather originates from the way the system of equations is formu-
lated. Specifically, the stiffness of the conventional governing equations is here attributed to the electric field being obtained
from Gauss’s law rather than from Ohm’s law, and from Gauss’slaw entailing severe convergence difficulties. Obtaining the
potential from Gauss’s law leads to a significant stiffness of the system of equations because of its dependence on thedifference
between the ion and electron densities:

��0 r2� D e.Ni � Ne/ (51)

The difference between the electron and ion number densities is a quantity that is subject to considerable numerical error when
the plasma is in the quasi-neutral state. This can be seen through the relative error on the difference between the ion andelectron

TABLE 3.
Problem setup for the various test cases.a

Case Description Bulk properties Boundary conditions Initial conditions

L, cm P , bar N , 1/m3 Qb, W/m3 �xD0, V �xDL, V Ni , 1/m3 Ne, 1/m3

#1 Dielectric sheaths 1 0.1 2:414 � 1024 100 0 0 1010 1010

#2 Dielectric sheaths 1 0.1 2:414 � 1024 102 0 0 1010 1010

#3 Dark discharge 1 0.1 2:414 � 1024 102 0 800 1010 1010

#4 Cathode sheath (lowJ ) 1 0.1 2:414 � 1024 102 0 200 1010 1010

#5 Cathode sheath (highJ ) 0.1 0.1 2:414 � 1024 100 0 800 1016 1016

#6 Glow discharge 0.3 0.1 2:414 � 1024 2 � 105 0 800 1016 1016

a In all cases, the secondary emission coefficient
 is set to 0.1, the electron temperatureTe is set to 20,000 K, the ion temperatureTi is set
to 300 K, and the initial potential� is set to 0 V.
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TABLE 4.
Optimal relaxation parameters that yield fastest convergence to steady-statea.

Case Optimal relaxation parameters

Conventional governing equations Proposed governing equations

CFL Lc, m ˛ CFL Lc, m ˛

#1 10. 1000 0. 500 1000 0.9
#2 0.02 1000 0. 250 1000 0.9
#3 500. 1000 0. 500 1000 0.991
#4 0.04 1000 0.95 500 1000 0.9
#5 0.2 1000 0. 50 1000 0.9
#6 0.005 1000 0. 10 1000 0.9

a A 100-node grid is used for cases #1 to #5 and a 200-node grid isused for case #6.

TABLE 5.
Comparison of the proposed governing equations to the conventional governing equations on the basis of number of iterations needed to

reach steady-statea;b;c.

Governing equations Number of iterations needed to reach steady-state

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6

Conventional 4,701 1,934,000 25 947,000 3,117 1,380,000
Proposed (ambipolar form) 171 203 2,294 196 1,950 6,444

a For cases 1-4, steady-state is reached when the maximum residual of the ion and electron densities falls below1011/m3s. For cases 5 and
6, steady-state is reached when the maximum residual of the ion and electron densities falls below1016/m3s.

b For cases #1 to #5, the grid is composed of 100 equally-spacednodes. For case #6, the grid is composed of 200 equally-spaced nodes.
c The CFL number, the relaxation factor˛, and the characteristic length scaleLc are chosen such as to yield optimal convergence rates (see

Table 4).

densities, which can be shown to correspond to:

E.Ni � Ne/ D NiE.Ni/ C NeE.Ne/

jNi � Nej
(52)

where the functionE./ here denotes the relative error of a certain quantity. For instance, consider a quasi-neutral plasma for
which the ion density is within 0.1% of the electron density.Equation (52) yields an error on the difference between the ion
and electron densities a thousand times greater than the error on either the ion number density or the electron number density.
Because of such an error amplification within the solution ofGauss’s law, the numerical error on the electron and ion densities
must be kept to a minimum as the solution progresses in pseudotime. Thus, large pseudotime steps can not be used when solving
either the ion or electron transport equations. Such a restriction on the pseudotime step size could be bypassed throughthe use
of an implicit relaxation scheme should the system of conservation laws be linear. However, when the system of conservation
laws is non-linear (as is the case herein), an implicit relaxation scheme would not prevent the error amplification through the
solution of the potential obtained from Gauss’s law and would hence be subject to more or less the same pseudotime step
restrictions as an explicit scheme.

Further, we underscore that we are not solving here a set of uncoupled equations, but rather we are here solving asystemof
equations (i.e. a set of equations that are coupled to each other). In fact, itis the strong coupling between Gauss’s law and the
electron and ion conservation equations that is at the origin of the stiffness when the plasma is in the quasi-neutral state: the
small errors necessarily associated with the update of the ion or electron densities become amplified by the potential equation
based on Gauss’s law, resulting in a large error in the potential (and hence the electric field) at the next iteration, which itself
leads to a large error on the electron and ion densities at thefollowing iteration because the latter depend on the electric field.
This quickly leads to divergence towards aphysical states unless extremely small time steps are used to integrate the charged
species equations.

If the slow convergence of the conventional governing equations is in fact due to the error amplification within the potential
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FIGURE2. Comparison between the proposed governing equations, the proposed governing equations in ambipolar form, and the conventional
governing equations on the basis of electron number densityfor test case #4 using a 50-node grid. The “exact” solution isobtained using the
conventional governing equations and a 1600-node grid.
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FIGURE 3. Impact of the grid size on the potential contours for test case #5. For the proposed governing equations using a 197-node mesh,
one in every 4 nodes is shown. The “exact” solution is obtained using the conventional governing equations and a 3200-node grid.

equation obtained from Gauss’s law, we would expect the conventional governing equations to restrict the CFL number to very
small values when solving plasmas that include quasi-neutral regions. We would also expect the restrictions on the CFL to be
relieved when the plasma does not include regions that approach the quasi-neutral state. As can be seen from Tables 4 and 5,
this is precisely the behavior exhibited by the conventional governing equations. When solving plasmas that do not include
quasi-neutral regions (test cases #1, #3 and #5), relatively high CFL numbers can be specified and this leads to convergence to
steady-state in less than a few thousand iterations. When solving plasmas that do include a quasi-neutral region (test cases #2,
#4, and #6), it is necessary to reduce the CFL to much lower values. This in turn leads to very slow convergence to steady-state
in one million iterations or more.

It may be argued that the convergence acceleration gains of the present method over the conventional approach are obtained
at the expense of accuracy. Such is verified not to be the case at least when the proposed governing equations are written in
ambipolar form. In fact, a comparison between the differenttypes of governing equations (see Figs. 2, 3, and 4) reveals that the
proposed set of equations in ambipolar form yield an electron density, potential, and current more or less as close to theexact
solution as the conventional set of equations. Such is corroborated by Tables 6 and 7 in which an assessment of the relative
error on the ion density and the potential is provided for several meshes: in all cases, no significant difference in resolution
between the present method and the conventional approach isapparent. This is verified to be the case within cathode sheaths,
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FIGURE 4. Total current density and current density components fortest case #5 at steady-state: (a) comparison between the proposed
governing equations in ambipolar form and the conventionalgoverning equations on the basis of total current density for various grids, and
(b) current density components obtained using the conventional governing equations and a 3200-node grid – see definition of the current
density, Eq. (12).

TABLE 6.
Relative error assessment in solving test case #4 at steady-state.a;b

Governing equations Average relative error

1

LNref

Z L

0

jNi � .Ni/exactj dx
1

L�ref

Z L

0

j� � �exactj dx

25 nodes 100 nodes 400 nodes 25 nodes 100 nodes 400 nodes

Proposed 43.3% 12.3% 1.9% 1.26% 0.52% 0.049%
Proposed (ambipolar form) 6.3% 1.4% 0.25% 0.89% 0.18% 0.033%
Conventional 11.3% 1.6% 0.13% 1.36% 0.19% 0.015%

a The “exact” solution is obtained using the conventional governing equations on a grid composed of 1600 equally-spaced nodes.
b The domain length is set to 1 cm, the reference ion number density Nref is set to1016/m3, and the reference potential�ref is set to 400 V.

anode sheaths, dielectric sheaths, and within quasi-neutral regions.
Compared to the conventional set of equations, the proposedgoverning equations are significantly easier to integrate because

they allow the use of much higher CFL number. As is shown in Table 4, the CFL number can be raised to values in excess
of 100 when using the proposed method. This in turn leads to a substantial reduction in the number of iterations to reach
steady-state. However, it is unlikely that such high CFL numbers can be specified when the electron and ion conservation
equations are integrated in coupled form with the neutrals mass, momentum, and energy transport equations. This is due to
the fact that non-linear stability restrictions generallyprevent the CFL number to be raised to values significantly more than 1,
even when using an implicit pseudotime stepping method. There are some flow regimes, however, for which this non-linear
stability restriction does not apply, such as when the Mach number is sufficiently low that shocks are either not present or have
a relatively low pressure ratio, or when the diffusion derivatives predominate over the convection derivatives. Actually, it turns
out that sheaths are expected to be located in such flow regions. Indeed, because sheaths occur near surfaces where boundary
layers are present, and because the sheath thickness is typically much less than the boundary layer thickness, the flow regions
where the sheath will be located are expected to be such that the neutral gas is diffusion-dominated and has a low Mach number.
It follows that, while we do not expect to be able to raise the CFL to values exceeding 100 when solving more intricate problems
such as compressible flows studded with high-strength shocks, we expect to be able to raise the CFL number to values well
exceeding 1 in the flow regions in which the sheaths are located.

Because it is likely that the CFL number may need to be reducedsignificantly from the values used herein when solving
more complex problems, it is important to determine the impact that a change in the CFL number has on the convergence

16



B. Parent, M. N. Shneider, S. O. Macheret, “Sheath GoverningEquations in Computational Weakly-Ionized Plasmadynamics”,
Journal of Computational Physics, 232 (1), 2013, pp. 234–251.

TABLE 7.
Relative error assessment in solving test case #5 at steady-state.a;b

Governing equations Average relative error

1

LNref

Z L

0

jNi � .Ni/exactj dx
1

L�ref

Z L

0

j� � �exactj dx

50 nodes 200 nodes 800 nodes 50 nodes 200 nodes 800 nodes

Proposed 15% 5.7% 1.4% 7.2% 1.9% 0.43%
Proposed (ambipolar form) 15% 5.7% 1.4% 7.2% 1.9% 0.43%
Conventional 14% 4.8% 1.1% 6.4% 1.7% 0.34%

a The “exact” solution is obtained using the conventional governing equations on a grid composed of 3200 equally-spaced nodes.
b The domain lengthL is set to 0.1 cm, the reference ion number densityNref is set to1018/m3, and the reference potential�ref is set to

400 V.
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FIGURE 5. Impact of the CFL number on the convergence rate when usingthe proposed governing equations in ambipolar form. A 100-node
grid is used for case #4 and a 200-node grid is used for case #6.The relaxation parameters̨andLc are as specified in Table 4.

characteristics of the present method, and to determine if the latter would still yield an advantage over the conventional approach
in the worst case scenario (i.e., when the CFL is as low as 1). Interestingly, the CFL number isseen to have a small impact on the
convergence rate when solving a high-current glow discharge typical of plasma aerodynamic applications (see Fig. 5b).On the
other hand, the CFL number is seen to have a more pronounced impact on the convergence rate of the electron density residual
when solving low-current cathode sheaths juxtaposed to a quasi-neutral region (see Fig. 5a). Nonetheless, for both cases, it is
verified that the proposed governing equations are advantaged over the conventional set of equations even for the lowestCFL
number considered: throughout the range3 � CFL � 500, the present method is seen to yield a reduction in computingeffort
of at least one-hundred-fold and as much as ten-thousand-fold.

We now proceed to demonstrate through some test cases that the set of governing equations proposed herein yields benefits
over the conventional set of equations not only for steady-state problems, but also for time-accurate problems. A time-accurate
solution is here obtained through dual-time stepping. Dual-time stepping consists of adding the time derivative to theresidual
and of performing pseudotime iterations at each time level until the residual falls below a certain user-defined convergence
threshold. A dual-time stepping approach is advantaged over a single-step implicit time stepping strategy by guaranteeing that
the discrete equations are converged at each time level, hence increasing significantly the accuracy of the solution. Aswell, a
dual-time stepping approach is advantaged over an explicittime stepping method by permitting the use of much higher time
steps. This is particularly beneficial when solving sheath problems where large differences in time scales exist between the
chemical reactions, diffusion, and convection phenomena.When using a time accurate dual-time stepping algorithm to solve a
glow discharge with a quasi-neutral positive column, the proposed set of equations results in a reduction in computing effort of
30–100 times compared to the conventional set (see Table 8).This significant gain in convergence acceleration is obtained with
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FIGURE 6. Time accurate profiles of the ion and electron densities for case #6 obtained with the conventional governing equations and the
proposed governing equations in ambipolar form. For both sets of governing equations, the grid is composed of 801 equally-spaced nodes
and the time step is set to 0.5 microsecond. For the proposed governing equations, 1 in every 20 nodes is shown.

TABLE 8.
Average number of iterations per time level when solving case #6 using a time accurate algorithma;b;c.

Governing equations Average number of iterations per time level

200 nodes 400 nodes 800 nodes 1600 nodes

Conventional 36,000 85,800 183,000 357,200
Proposed (ambipolar form) 1,003 1,585 2,086 3,179

a At each time level, the solution is considered converged when the maximum residual of the ion and electron densities falls below1019/m3s.
b The CFL number, the relaxation factor˛, and the characteristic length scaleLc are chosen such as to yield optimal convergence rates (see

Table 4).
c The average is taken over the first 20 time levels, with the time step size set equal to 0.5 microsecond.

essentially no penalty in resolution. In fact, the electronand density contours obtained with each approach show no discernible
difference as long as the mesh is refined sufficiently to yielda grid-independent solution (see Fig. 6). On coarser meshes, it is
verified that, similarly to steady-state problems, the average relative error on the potential and the electron and ion densities is
essentially unaffected when the proposed governing equations are solved instead of the conventional governing equations.

9. Conclusions

To date, the numerical simulation of plasma sheaths using macroscopic-scale transport equations has involved the coupling of
the electric field potential equation obtained through Gauss’s law to the electron and ion transport equations obtainedthrough the
drift-diffusion model. When discretized using finite difference stencils, this set of equations (referred herein as the “conventional
governing equations”) is particularly stiff and typicallyrequires hundreds of thousands of iterations to reach convergence
whenever a quasi-neutral region forms adjacent to the sheath. This is attributed to the potential equation obtained from Gauss’s
law amplifying in quasi-neutral regions the numerical error associated with the electron or ion densities. Because of such an
error amplification within the solution of Gauss’s law, the numerical error on the charged species densities must be keptto a
minimum as the solution progresses in pseudotime. Thus, large pseudotime steps can not be used when solving either the ion
or electron transport equations, and this in turn leads to anexcessive number of iterations to reach convergence.

A new set of sheath governing equations is presented here that is such that the electric field is obtained from Ohm’s law rather
than from Gauss’s law. To ensure that Gauss’s law is satisfied, some source terms are added to the ion conservation equation. In
doing so, the potential equation is not strongly dependent on the difference between the ion and electron number densities, and
this relieves the stiffness associated with its integration. The proposed governing equations are found through several test cases
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to result in a remarkable improvement in computational efficiency compared to the conventional set of equations. The number
of iterations needed to reach convergence is typically reduced one-hundred-fold to ten-thousand-fold whenever a quasi-neutral
region is present within the plasma. This is confirmed to be the case not only for steady-state but also for time-accurate solutions
of sheaths.

What makes the approach proposed herein particularly appealing is that it does not sacrifice accuracy in favor of convergence
acceleration. For all test cases here considered, including steady-state and time-accurate simulations of dielectric sheaths,
cathode sheaths, anode sheaths, dark discharges, and glow discharges, the present set of equations results in a solution that is
essentially identical to the one obtained from the conventional set as long as the mesh is refined sufficiently. When the mesh is
coarse and the numerical error significant, the resolution exhibited by both approaches is more-or-less the same: independently
of the mesh size, the proposed governing equations are foundto yield a numerical error on the potential and the charged
species densities that does not exceed significantly the oneexhibited by the conventional governing equations. Yet another
appeal of the present approach is that it can be used in conjunction with any relaxation technique (such as block-implicit
pseudotime relaxation, JFNK, LUSGS, multigrid,etc.). That is, the use of the proposed governing equations is expected to
yield considerably faster convergence also when using alternate relaxation techniques, not only when using the block-implicit
pseudotime relaxation technique as done herein.

It is cautioned that the method presented in this paper does have one disadvantage over the conventional approach. Specif-
ically, because the potential equation is obtained from Ohm’s law and not from Gauss’s law, it is necessary to reformulate
the boundary conditions at the anode in order to ensure that Gauss’s law is satisfied within the anode sheath. The reformu-
lated anode boundary condition is disadvantaged over the standard approach by requiring a more substantial relaxationof the
electron density at the boundary. While this is generally not problematic, it does lead to some relatively slow convergence
when simulating dark discharges devoid of a quasi-neutral region. Furthermore, we note that while the newly formulatedanode
boundary condition has been verified to yield the same solution as the standard approach for all test cases considered, itis not
clear whether it would remain valid in more intricate problem setups (such as when the sheath is multidimensional, when the
sheath is affected by the magnetic field, or when the plasma has several types of ion species). Further investigation is hence nec-
essary to extend the boundary conditions at the anode, as well as the governing equations proposed herein, to multicomponent,
multidimensional, and magnetized plasmas.
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