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Positivity-preserving High-resolution Schemes
for Systems of Conservation Laws

Bernard Parerit

A new class of flux-limited schemes for systems of conseswdfiws is presented that is both
high-resolution and positivity-preserving. The schenresabtained by extending the Steger-
Warming method to second-order accuracy through the usermponent-wise TVD flux lim-
iters while ensuring that the coefficients of the discre¢imraequation are positive. A coefficient
is considered positive if it has all-positive eigenvalued has the same eigenvectors as those of
the convective flux Jacobian evaluated at the correspontidg. For certain systems of con-
servation laws, such as the Euler equations for instanisecdmdition is sufficient to guarantee
positivity-preservation. The method proposed is advadagyer previous positivity-preserving
flux-limited schemes by being capable to capture with higblgion all wave types (including
contact discontinuities, shocks, and expansion fans)eraktest cases are considered in which
the Euler equations in generalized curvilinear coordimat® solved in 1D, 2D, and 3D. The
test cases confirm that the proposed schemes are posgi@serving while not being signifi-
cantly more dissipative than the conventional TVD methdde schemes are written in general
matrix form and can be used to solve other systems of cortsemlaws, as long as they are
homogeneous of degree one.

1. Introduction

OSITIVITY-PRESERVATION and high-resolution are two desite attributes a flux discretization scheme should pos-

sess. High-resolution refers to the capability to captuith few nodes continuous and discontinuous waves while not
introducing spurious oscillations, and can be achieveauttin flux or slope limiters. Positivity-preservation reféo the ca-
pability to conserve the positivity of the determinativ@perties. The determinative properties are the propeti@smust
necessarily be positive for the solution to be within phgklmounds. For instance, for the Euler equations, the détetive
properties are the density and the temperature. For thé-spaties Favre-averaged Navier-Stokes equations, hotarst the
density and the temperature remain positive, but the mastdns, the turbulence kinetic energy, and the dissipatite must
also remain positive. Should the latter become negativesthution is not within physically-admissible bounds aedese
convergence difficulties can ensue. A method that is pdsijweserving prevents such convergence problems byagiteeing
positivity of the determinative properties.

When solving a scalar advection equation, the Courant ugwdrstencil is well-known to conserve the positivity of the
variable solved. However, when extended to second-ora@aracy, the Courant scheme is not guaranteed to remairimitysit
preserving. For instance, in Ref. [1], it is shown that setorder accurate schemes generally do not preserve fiysitiv
unless flux limiters are used. As well, in Ref. [2], it is derstrated that flux limiters are insufficient to guarantee fpasi
of reacting advection equations, and a new class of fluxdidhichemes is thus presented that is positivity-preseimitite
presence of chemical reactions. The latter methods aregvewlimited to scalar conservation laws and do not guasant
positivity-preservation when used to solve a system of eoradion laws (i.e. a group of several coupled scalar coaten
laws).

When solving systems of conservation laws, most commoséddilux discretization schemes (Roe, HLL, AUSM, etc) do
not generally preserve the positivity of the determinativeperties. On the other hand, two schemes that have beamsho
to be positivity-preserving under a CFL-like condition d@ine Godunov exact Riemann solver and the Steger-Warming flux
vector splitting scheme [3, 4]. The latter are, howeven-firsler accurate. When extended to second-order accuremygh
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flux limiters or MUSCL slope limiters, the positivity-presgng property is lost. For this reason, much effort has bimroted
recently to craft second-order-accurate stencils thagianerally positivity-preserving (see for instance ReBs§], 7, 8]). The
latter methods ensure positivity-preservation by redyitire slope limiter function within the MUSCL reconstructistage.
Because the MUSCL slope-limited approach necessarilyiresjthe vector of conserved variables to be reconstruotezl/ery
cell interface, it requires more computing work than a flumited scheme. Better performance could hence be expected f
a flux-limited method over a MUSCL strategy.

In Ref. [9], it is shown that, when used in conjunction witle first-order Steger-Warming scheme, a flux-limited method
can preserve positivity under certain conditions. One e$éhconditions is that the positive and negative flux Jacabirices
need to be rewritten in symmetric form. The approach folldkes work of Friedrichs [10], in which it is proven that the
positivity of a system of equations can be preserved whemtiiteix coefficients multiplying the vector of conservediaates
within the discrete equation have positive eigenvaluesamadgymmetric. This is particularly problematic when tgyto craft
a positivity-preserving method for compressible flow, hessathe coefficients yielded by the common discretizatiothots
(such as Steger-Warming, Roe, HLL, etc) are not symmethenT the discretization schemes need to be severely mottified
guarantee positivity-preservation. Such modificationrstb@n result in a significant loss of resolution and/or ofdksirable
monotonic property.

Another approach that has been proposed recently to olgaitiyity-preserving flux-limited methods is the so-cdlleule
of the positive coefficients” [11], which states that padiiiis preserved as long as the coefficients of the discigtaon have
positive eigenvalues and have the same eigenvectors asdhtige corresponding flux Jacobians. The advantage of ta@fu
the positive coefficients over Friedrichs’ scheme is thaait be used in conjunction with some commonly-used digerbin
methods for compressible flow without requiring a symmatian of the Jacobian matrices. For instance, using theoffutlee
positive coefficients, a flux-limited second-order acoaittension of the Steger-Warming scheme was outlined ihgdid
denoted as POSFL. The POSFL scheme did not require a moidificg#tthe Jacobian matrices and was seen to maintain the
monotonicity of the underlying first-order scheme whilertiesecond-order accurate and being positivity-preserviiogvever,
POSFL was found to have one substantial drawback compaibé wonventional (non-positivity-preserving) TVD scheame
namely, significantly more dissipation is introduced by stencil in the vicinity of contact discontinuities. This svattributed
to the POSFL approach forcing the limiter to be the same di/#uacomponents while the conventional TVD stencils aléxv
the limiter to have a different value for each flux componéet component-wise flux limiting).

In this paper, a novel positivity-preserving method is egd for systems of conservation laws that overcomes thé sho
comings of previous approaches. The method consists ofi@ixig the Steger-Warming scheme to second-order accuracy
through the use of a component-wise flux limiter that satstfie rule of the positive coefficients. The method proposed i
monotonicity-preserving, positivity-preserving, andlis< limited (i.e., it does not entail the cumbersome MUSCtamstruc-
tion of the conserved variables at the cell’s interfaces)ttter, contrarily to the POSFL scheme presented in Ref, fh#
method proposed in this paper does not force the limiter tthbesame over all flux components, hence resulting in much
improved resolution in the vicinity of contact discontities.

2. Classof Systems of Conservation Laws

The schemes presented herein apply to a system of hypecbolservation laws of the form:

ad ad
§U+$F(U)_O Q)
whereU is the vector of conserved variables afids the vector of convective fluxes. Further, the system obeoration laws
must have the following two properties.
Firstly, the system of conservation laws must be such tlattmvective fluxF (U) is a homogeneous function of degree
oneinU:
F =AU (2)

with the convective flux Jacobiath = 0F/0U.

Secondly, the system of conservation laws must satisfy thke ‘of the positive coefficients”. The rule of the positive
coefficients can be summarized as follows. Consider an eguit which the vector of conserved variables on node A is
determined as a function of the vector of conserved varsaimethe neighboring nodes B, C, D, etc:

CAUA == CBUB + CCUC + CDUD + (3)
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whereC, s ... are square matrix coefficients. According to the rule of theitive coefficients, the determinative properties
associated with vectdr, are guaranteed to be positive if the determinative progerssociated with the vectdig ...
are positive and if the matrix coefficien€s ; .. are positive. A “determinative property” is defined as a prypthat must
necessarily be positive to yield a vector of conserved tetthat is within physically-admissible bounds. Foranste, for
the Euler equations, the determinative properties woufdespond to the temperature and the density. For the npdties
Favre-averaged Navier-Stokes equations, the determéatbperties would further include the species partiabdes as well

as the turbulence kinetic energy and dissipation rate. Aficat is considered positive if all its eigenvalues areajer than
zero and if its eigenvectors are the same as those of thectagpeonvective flux Jacobian:

"= L""(U) x Df x L(Uy) ., Co=L"(Us) x D} x L(Us) . ... @)

with L the left eigenvector matrix anB* a diagonal matrix with the diagonal elements being grehtat zero.

The Euler equations (comprising of the mass conservatioamemtum conservation, and total energy conservation equa-
tions) have the two properties mentioned above. Indeed; tier equations can be shown to have flux vectors that are homo
geneous functions of degree one and to satisfy the rule gfdbitive coefficients [11].

3. Flux Vector Splitting Discretization

When discretizing Eg. (1) on a uniformly spaced mesh usingstdrder backward stencil for the time derivative and aseon
vative stencil for the spatial derivatives, the followirsgobtained:
Ul'n-H - Ui + E+1/2 - E—1/2
At Ax

=0 )
For the Steger-Warming flux vector splitting scheme, the &itithe interface becomes [12]:
Fivpp = F" + F7, (6)

whereF* = L7'A*LU with A* = S(A £ ]A)). Inthe latter,A is the eigenvalue matrid, the left eigenvector matrix, and
L~! the right eigenvector matrix.

3.1. Entropy Correction

When conservation laws do not include diffusion phenomenahen the grid is not refined sufficiently to resolve propémke

diffusion terms, the discretization of the convection datives using the Steger-Warming method can yield a salutiat does
not satisfy the second law of thermodynamics. This could tedhe formation of entropy-increasing nonphysical pheena.
One way that such nonphysical phenomena can be avoided é&lbfiming the eigenvalues in the following manner [13]:

[A +|All,, — [Al, £ [ALL, + 8a® )

In the latter,§ is a user-defined positive number typically set to 0.1. Itasehpreferred to apply the entropy correction to all
the eigenvalues even though only the acoustic waves neeg ¢torbected to prevent nonphysical phenomena from forming.
Applying the entropy correction to all the eigenvalues doesaffect the accuracy of the solution and has the advarafige
allowing larger time steps when integrating the equations.

3.2. Second-Order Extension Using a Component-wise Limiter

The flux at the interface can be extended to second-orderagcusing a component-wise limiter as follows:

1 1
Fiyip=F' + _q)iJr+1/2 (FrJr - Etl) + F + 590

D) i+1 5 itl/2 (F:H _F‘i:,-2) (8)

In the latter, the flux limiter matrix is a diagonal matrix with the elements on the diagonal beiegtgr or equal to 0 and less
or equal to 2. By setting the limiter matrix to the identitytmia(i.e. ®* = I), a piecewise-linear distribution of the convective
fluxes is in effect, hence resulting in a second-order-atetscheme. On the other hand, setting the flux limiter madrbero
(i.e. @* = 0) yields a first-order-accurate scheme by forcing a piecawanstant spatial distribution of the convective fluxes.
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Because the diagonal elements of the limiter matrix are eoessarily equal to each other, it is possible to limit eack fl
component independently (i.e. component-wise flux lingitin

For a scalar conservation law, the monotonicity of the sofutan be preserved by imposing the Total Variation Dinfimig
(TVD) condition on the limiter. For a system of conservatiaws, it is a common practice to impose the TVD condition on
each flux component, independently of the other componaertitie( this does not guarantee monotonicity-preservatfallo
properties per se, this yields a solution that is close todgionotonicity-preserving). This can be done by settimgdigonal
elements of the limiter matriceb* and®~ as follows:

- [F7], —[F5.],
[q>f+1/2]r,r =¢ ([F_ ]r — [F_ ])) 9)

i+2

(072,21, = ¢ (%) -

whereg is the limiter function. The limiter function must fall witha certain admissible limiter region to yield high-regan
TVD schemes. Three such limiter functions are the Van Leanmad, and superbee limiters [14, 15]:

max(0, min(1, b)) (minmod
¢(b) = (b+1[b])/(1+1b]) (Van Lee) (11)
max(0, min(2, b), min(1, 2b)) (superbeg
When used in conjunction with Eq. (8) the latter limiter ftinos have the property to yield symmetric discretizatitamsils.
That is, the discretization stencils are such that the eisaolution of a leftward-travelling wave is symmetricle bne of a

rightward-travelling wave.
For reasons that will become clear in subsequent sectioaéluix at the interface can also be written as follows:

1 _ _ | _ _
Fi+1/2 = Fl-Jr + EL,' l\y;:-l/2 (G;r - GiJr—l) + Fi+1 + ELi-ilq"i-H/z (Gi+l - Gi+2) (12)
where¥t and¥~ are diagonal matrices and whefeis the product between the eigenvalues and the charaitersiables:

GE=A*LU (13)

Because Eq. (12) must yield the same flux at the interface af8Eqve can equate both equations to obtain:

1 1 _ _ 1 _ 1 _ _ _ _
Eq)ztrl/z (Fz+ - thl) + §q>i+1/2 (Ff+1 - F ) = ELi I\Ij:'l/Z (Gi+ - Gi+—1) + ELiJil\piJrl/Z (Gi+1 - Gi+2) (14)

i+2
Then, noting tha®/, , , and®;, , are independent of each other and i, , and¥;, , , are also independent of each
other, it follows that the following two equations must hold
Lrl\yir+l/2 (GIJF_GtJr—l) = q)iJr+l/2 (FiJr_Fitl) (15)
Lijil"pijrl/Z (Gijrl o Gijrz) =Py (szrl o szrz) (16)

The former can yield an expression fért by multiplying both sides by.;, writing in tensor form, and then isolating the
diagonal elements of th& matrix:
[Liq)j;l/z (E+ - EJ’—_I)],«

N (Tn ) 0
Similarly, we can find an expression for the diagonal elements:
Lin®r o (Fiin = Fio),
[\p;‘f‘l/z]r,r _ [ +1 +i/2( +l +2)] (18)
[Gi+l - Gi+2],

It is emphasized that as long 85" is defined according to Egs. (17)-(18), the flux at the intarfdetermined from Eq. (12)
is equivalent to the flux at the interface determined from @ Writing the flux at the interface as in Eq. (12) has some
advantages, as will become apparent when crafting pdgHiveserving discretization stencils in Section 5 below.
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4. Necessary Conditionsfor Positivity-preservation

The rule of the positive coefficients is now used to deterrtiiegestrictions on the limiter matrices and on the time stejch
ensure positivity-preservation. It is noted that the ctiads derived in this section apply tocmponent-wisfux limiter
function. That is, the limiter function is not necessaribnstant over all flux components. Because of this, the pagiti
preserving restrictions on the maximum allowable time steg on the limiter function found herein differ significgnthan
those outlined in Ref. [11], in which the limiter function svassumed constant over all flux components.

The positivity-preserving conditions applicable to a cament-wise flux limiter can be found from the rule of the pesit
coefficients as follows. First, we obtain a second-ordeueate discrete equation by substituting the second-oterrate flux
at the interface outlined in Eq. (12) into the discrete eiquats):

Ax 1. _ | S _ _
E (UinJrl - Ui) = _FiJr - ELi l\y;:-l/2 (G;r - GiJr—l) - Fi+1 - ELi-ilq"iH/z (Gi+l - Gi+2) (19)
1 _ | _ _
+ F;tl + ELifll\Ijitl/Z (Gi-tl - Gitz) + Fz + ELi lq‘lifl/z (Gi - Gi+1)

Noting thatF* = L~'A* LU and thatG* = A LU, the latter can also be written as:
C'UM = CiLUis 4+ CioyUimy + CiU; + CiUiyy + CigaUi g (20)

in which the matriceg’;, C;_,, etc correspond to the discretization coefficients and efieed as:

Ax Ax

CinJrl = A_II — E(L;I)VHHIL?JF] (21)

_ 1 [Ax Ly + - 1y -
Ci= L' (1= A = U AT+ AT+ S AT L (22)
1 1
Ci, = (L;l1 + EL;‘\ny/Z + §Li_ll‘1’f+1/z) AL, (23)
B | R | _
Cf+1 = - (Li—il + ELi-',l-l\IJi+l/2 + ELi 1\Iji—l/z) Ai+1Li+1 (24)
1

Cin= _EL:l“I"iJr—l/zAiJr—szf2 (25)
o, _

Ciso= ELi-il-l\IIi+l/2Ai+2Li+2 (26)

To obtain a positivity-preserving discretization stenitie rule of the positive coefficients must be satisfied. Tis¢ gonstraint
imposed by the rule of the positive coefficients is that tiyeevectors of the coefficients must match those of the quoreting
flux Jacobian. Such is not the case for all coefficients. I fady the coefficient€; andC;*' satisfy this condition.

It follows that the discrete equation (20) can not satisfy thle of the positive coefficients directly. Rather, to Sgtihe
rule of the positive coefficients, it is necessary to firstnitathe discrete equation (20) as:

CinJrlUinJrl — C,-/Ui + C/

l+1Ui+1 +Ci/_1Ui71 (27)

In the latter, the coefficient"" is as defined above while the coefficients, C;_, and C;

/., are such that the following
equations hold:

Ax 1 1 1 1
Ci/Ul' = LT‘ (El - AiJr - E\IjiJr+l/2Ai+ + A? + E\Iji—l/2Ai) LU + EL;I\I"[JF+1/2G1'+—1 - EL;IW;—l/zG;-l (28)

1 1
C Ui = (Lill + ELill“piJrl/z) Gztl - EL:l“pitl/zGitz (29)
, - | _ Lo _
Ci+1Ui+1 = - (Li—il + ELi-',l-l‘Ili+l/2) Gi+1 + ELi-il\I"i+1/2Gi+2 (30)

In Eq. (27) the coefficien€," ™" satisfies the rule of the positive coefficients by having eigetors equal to the ones of the
corresponding convective flux Jacobian and by having pes#tigenvalues. On the other hand, the other three coetSdién
C/_, andC/ ) are not generally positive but can become positive undgaiceconditions.
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4.1. Positivity-preserving Restrictionson the Flux Limiter

Let’s now proceed to find the conditions for which the coeditsC;_, andC/,, are positive. Such will yield restrictions on
the diagonal matriceg+ andW¥—, which themselves will lead to restrictions on the flux liemithrough Egs. (17) and (18). The

positivity-preserving restriction on th&~ matrix can be determined from Eq. (30) by rewriting the ceaghitC;, in terms
of eigenvectors and eigenvalues:
_ _ L _ Lo _
Li-',l-lDthHLiJrlUiJrl = _Li—il (1 + E“pi+1/2) Gi+l + ELi-',l-l\IJi+l/2Gi+2 (31)
Multiply all terms by2L;,, and write in tensor form:
2[Df],, [LiniUpl, = = [21 + V7, 0], (G, + (950, (G, (32)
Multiply all terms by[A ]
2 [thrl]m [Gf+1], =—[21 + ‘I"f+1/2],,, [Af+1],-,,- [Gf+1],- + [‘I’F+l/2]r,r [A7+1];-,;- [Gf+2]r (33)
Divide all terms by[ G, | :
+ — — — — [G;+2]r
2 [DiJrl]r.r = [21 + \piJrl/Z]r.r [AiJrl]r.r + [\I]i+1/2]r.r [Af+1]r.r (34)

[Gi_+1],-

For the stencil to be positivity-preserving, all the diagbalements within the matri®;", | must be positive. Therefore, it
follows that:
[Gier]r

- [21 + \pi_Jrl/Z]r,r [Ai_+1]r.r + [\ij_+1/2]r.r [Ai_+1]r.r [G7 ]
i+1],

Divide all terms by[Aijrl]” noting thal{Ai—H]” is always negativg A ~], . can not be zero because of the entropy correction
Eq. (7)):

>0 (35)

G-
ot Vi, L, f <0 0
i+1],
Regroup similar terms:
G- — G
[\IJ;+1/2])-J[ 1+2])‘ [ 1+1])‘ < 2 (37)

(G,
If the LHS is negative, the condition is always satisfied.oltdws that the condition remains valid if the LHS is subjacthe
absolute value operator:

] [Gi_+2];- — [Gi_+l];-
" (G,
By applying the absolute value operator on the LHS, the rarigeimissiblel~ is further limited, and this results in a more
dissipative stencil. However, as shall be seen in the neiose(in which the positivity-preserving condition on thme step
is derived), it is necessary to do so to ensure that the st@meains positivity-preserving for a small time step.
Condition (38) can also be rewritten as follows:

2[Gi], 2[G],
[Gia], =[G, [Gia], — [Gin],

Starting from Eq. (29) and following similar steps, we cardfthe condition on the diagonal matni™ that ensures that the
coefficientC;_, is positive. This yields:

[v;

12 <2 (38)

(39)

< [“I";rl/z]r.r <

[Gt— ]r — [Gi—t ]r
[\I—’i—l/z]r'r 2[Glt1]r ! <2 (40)
which can be rewritten to: [ . ] [ . ]
2|1GZ, |, 21GL, |,
QIR R AT | e ) “
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For a conservative stencil, thie matrix at thei + 1/2 interface must be determined in the same way aslthmatrix at the
i — 1/2interface:

2[G7], 2[G67],
[Gitl]r - [G7+:|r [Gltl]r - [G7+:|r

In summary, it can be stated that, should the flux at the imterbe determined as in Eq. (12), conditions (39) and (42} baus
satisfied in order to guarantee a positivity-preservingate

- < [\I"i++1/2]r.r < (42)

4.2. Positivity-preserving Restriction on the Time Step

The rule of the positive coefficients can also be used to héterthe maximum time step that guarantees positivity grkegion.
This can be done by starting from Eqg. (28), rewriting the fioieit in terms of eigenvectors, multiplying all terms by, and
then rewriting in tensor form:

Ax

1 1 1
[D;r]r,r [LiUi], = [El - A;r - E\piﬂ/zl\j + A7+ E"IJi—l/2Ai:|

[L:U], + 5 ["I":'Jr+1/2]r.r [G.],

r

- i (43)
E [\pifl/z]r.r [Gi+1]r

Regroup similar terms together:

r 1

Ax 1 1
[D;i_],.,,. [LiUi]r = I:EI - A;‘r + AI_] ) [LiUi]r + 5 [‘piﬂ/z]” [Gitl - Gi+] + E [\I"i_—l/z]r.r [G‘_ - Gi_+1]r (44)

Multiply all terms by[A /],

Ax _ 1
(071,167, = | 51— a7+ 47| 671+ 5 (¥, T65, 67, [0,
r.r (45)
.

+ ffl/z]r.r [Gi_ - Gf_+1]r [A?—]r.r

Divide all terms by{G,"],:

Ax (G, -G 1 (G -G,

_ ! 1, -
I:Di+]r,r = [El — AT+ A; } + 2 [‘IJI'++1/2]r,r W [A;r]r.r + 2 [\pi—l/2]r,r W [A;r]r,r (46)

Now note tha‘[Gz—‘r]r = [A;‘_]))[Lz Ui]r = [Ar]ii[G;]r/[Aj]rr
Ax 1 (G, - G] 1 (G, -G
+ _ | =247 + — - + i i 1y + _ — i+1 i 1r —
[Di ]r.r - |:Al 1 Ai + Ai }r'r + 2 [\IjiJrl/Z]r,r [Ger]) [AI ]r,r 2 [\Ijifl/Z:Ir.r [G;], [Al ]r.r (47)

To satisfy the rule of the positive coefficients, all the terom the diagonal of the matri®;"* must be positive. Then, it follows
that:

Ax 1 G, -G, Lo G =Gl (-
I:EI - AI+ + AI_} + E [\pitrl/Z]r,r % [A;‘_]rr - E [\Ijifl/Z]r.r % [Al ]r.r >0 (48)

Without loss of generality, it can also be stated that:

Ax
— I —AT+ A7
|G- ea]

1
+ _
[Ai ]r.r + 2

[Glt - Gl+]r
["I"iJrJrl/z]r.r [le]

r

1 G; 1 _Gf r _
—3 [“I"iil/z]r.r % [Ai ]r.r >0 (49)

r.r

The most restrictive condition would occur when the absolhalue terms are as high as possible. But, according to sitvity
conditions (38) and (40), the magnitude of these terms cat bwst 2. Then:

[E, —Af+ A;} —[A7]

Y +[A7],, >0 (50)

r.r
r.r
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or, noting thatA* = %(A 4 |A|) and isolating the time step, we get:
Ax

< e

2 |[Ai]r.r|

Thus, we find a condition on the time step that must be enfdicgdarantee positivity-preservation. That s, the tine@ shust
be less than half the ratio between the grid spacing and thedteigenvalue (in magnitude) within the domain. For thieE
equations, this can be easily shown to yield a restrictiotherCourant number. That is, the maximum Courant numbeimwith
the domain should be less than 1/2 to guarantee positivéggovation.

In summary, the discretization stencil is guaranteed tods#tigity-preserving if conditions (39), (42), and (51pasatisfied
conjunctly. Should either one of these conditions not besfead, there is no guarantee that the stencil will conselnee t
positivity of the determinative properties.

At Vr, Vi (51)

5. Proposed Positivity-preserving High-resolution Schemes

A novel class of flux-limited schemes is now outlined thatighhresolution while satisfying the positivity-preseargiconditions
outlined in the previous section. The difficulty in achigyithis task lies in determining the optimal limiter that isvienough
to yield a positivity-preserving scheme while being suéfitly high to yield a high-resolution scheme. For this pemat is
convenient to express the flux at the interface as in Eq. (12):

Lo, _ _
+ ELiJil‘"piJrl/Z (Gi+1 - Gi+2) (52)

whereG* = A*LU, F* = L7'G*, A* = 1(A £ |A]), L the left eigenvector matrix, ' the right eigenvector matrix\
the eigenvalue matrix; the vector of conserved variables, ald some diagonal matrices. In order to obtain a positivity-
preserving scheme that is as close as possible to the sthftabatimited Steger-Warming method [see Eqg. (8)], the dizajo
matrix ¥~ should be as close as possible to the one obtained in Eq. (i® teing within the bounds imposed by the
§ [G;Fl]r min [Li+1q>7+1/2 (Fijrl B Fijrz)]r § [G;Fl]r
[Gijrl - G;+2]r [Gijrl - Gijrz]r
And similarly, the matrix¥ * that is as close as possible to the expression (17) whileghwithin the bounds imposed by the
positivity-preserving condition (42) corresponds to:
g =max|—|——F— 54
[ I+1/2]r.r ( [Ger _ Gztl]r [Ger _ Gztl]r )) ( )
where the limiter matrice®~ and®™ are determined as in Egs. (9) and (10):
E;l]r - [F‘lfi»Z], I:E ]r - [F‘ltl])
whereg is the flux limiter function (minmod, Van Leer, superbee) et specified in Eq. (11):

1
Fi+1/2 = Fer + EL;I“I";FH/Z (GiJr - Gz‘tl) +

i+1

)

£[67],
[GlJr - Gltl]r

’

positivity-preserving condition (39). This can be accoistptd as follows:
Oy = — 53
[ I+1/2]r.r maX( [G,’jr] _ G,‘jrz]r )) ( )
E [Gi‘k]r min ([Liq)itrl/Z (Fer - Etl)]r
F~| —|F~ F,-+ _ Fi+
[q)i_+l/2];-’,- = ¢ ([[ i ]r [ l+1]r ) and [q);‘_+1/2]r,r = ¢ (M) (55)

max(0, min(1, b)) (minmod
¢(b) = (b+[b])/(1+1b]) (Van Lee) (56)
max(0, min(2, ), min(1, 2b)) (superbeg

The schemes outlined above achieve high resolution thrtheghse of component-wise flux limiting and are guarantedxto
positivity-preserving as long as the user-specified cannétes within the following range:

0<E<2 (57)

The higheft is, the less dissipative the stencil becomes. Because ofiroff errors due to the use of real or double precision
numbers, and because of small errors due to compiler optiniz, £ should be set to a value slightly below 2. For the 1D
problems considered hereipcan be set to as high 1.99 without resulting in negative r@leenergies or densities. However,
for certain 2D or 3D problems, it is necessary to decréasgther. As well, it is found that fixing to a value 10% less than
its theoretical maximum helps to prevent divergence at Liilgk steps. For these reasofss set to 1.8 for all test cases here
considered.
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6. Test Cases

Several test cases with particularly stringent conditemesnow considered to assess the capability of the propcbedes to
maintain positivity of the determinative properties. Adiwa comparison with the standard TVD stencils is presetuebsess
the amount of resolution lost through the enforcement oftpdg-preservation. Firstly, some test cases are presksolving
the one-dimensional Euler equations in Cartesian cooresnd his is followed by test cases focused on the solutidheofD
and 3D Euler equations in generalized curvilinear cootginia

6.1. One-Dimensional Euler Flow

The performance of the proposed schemes is first assessadimgghe 1D time-accurate Euler equations:
oUu  oF
T

where the vector of conserved variablgs convective flux vecto" and the eigenvectors and eigenvalues of the convective

flux Jacobian can be found in the appendix. The solution iswackd accurately in time through a first-order-accuratéaikp
Euler strategy:

0 (58)

1
At

where the convective flux at the interfadg, ,,», is obtained following the method outlined in Section 5 [Eggs. (52)-(57)].

Several time-accurate 1D test cases are considered, withittal conditions outlined in Table 1. For all cases, thedfic
heat ratio is fixed td .4 and the gas constant is set286 J/kgK. As revealed in Table 2, negative pressures and dessit
appear in the solution obtained using well-established disgretization methods. For instance, both the first-cedeurate
Roe scheme [16] and the second-order accurate Yee-Roe a¢héhfthe latter corresponds to a second-order extengitheo
Roe scheme through a minmod limiter applied to the chariatitevariables) fail to maintain positivity when eitherotaum is
created within the gas or when rarefaction fans of modetegagth make the density decrease significantly. This praoldan
not be fixed by lowering the time step: even when the time sequ¢h that the maximum Courant number everywhere in the
domain is less than 0.001, the Roe schemes do not maintativipps

The lack of positivity-preservation is also exhibited byrsosecond-order extensions of the Steger-Warming flux vecto
splitting method. As outlined in Table 2, a second-ordeepsion of the Steger-Warming scheme through flux limiters is
seen to yield negative internal energies when either strangfaction waves decrease the density to low values or vahen
Riemann problem occurs on a flow moving at hypervelocitinghbse situations, the flux-limited Steger-Warming schame
not positivity-preserving, independently of the time stegimiter used. In fact, even the most diffusive TVD limitisrseen
not to preserve the positivity of the determinative projgsrt

Alternately, a second-order accurate extension of theeBt&@rming method can be obtained using the MUSCL strategy
[18]. The MUSCL approach achieves second-order accura@pbiying the TVD limiters on the primitive variables instea
of the fluxes, and then reconstructing the flux vectors at ks dnterfaces from those extrapolated primitive valésh In
so-doing, the flux discretization scheme becomes posijieserving, at least when the minmod limiter is used. Haxe
when using more compressive limiters, numerical tests shawMUSCL is not generally positivity-preserving (see [&b).

1
(U = UP) + 5 (Fiip = Froajp) = 0 (59)

1 1

TABLE 1.
List of 1D test cases and initial conditiofs.

Left initial state ¢ < 0) Right initial state { > 0)

Case Description o, kg/m®  u,m/s P,bar o, kg/m®  wu,m/s P,bar
#1 Riemann problem 1 0 1 1 0 0.1
#2 Riemann problem at hypervelocities 1 1600 10 1 1600 0.1
#3 Vacuum generation 1 -1000 0.1 1 1000 0.1
#4 Vacuum generation at hypervelocities 1 1000 0.1 1 3000 0.1
#5 Shock reflection 1 1000 0.1 1 -1000 0.1
#6 Shock reflection at hypervelocities 1 3000 0.1 1 1000 0.1
#7 Double rarefaction waves 1 -200 0.1 1 200 0.1

2 In all cases, the computational domain is located withlitb m < x < 0.5m.
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TABLE 2.

Assessment of positivity-preserving capability of vas@echemes when solving the 1D test cdses.

Positivity Preserving?

CFL=0.00%*°

CFL=0.8

Method

Roe (first-order)
Steger-Warming (first-order)

Yes Yes No Yes Yes Yes No
Yes Yes Yes Yes Yes Yes Yes

Yes Yes No Yes Yes Ys
Yes Yes Yes Yes Yes Yes

Case#l #2 #3 #4 #5 #6 #7 Case#l #2 #3 #4 #5 #6 #7

Yee-Roe (minmod) Yes Yes No Yes Yes Yes No Yes Yes No No Yes No No
S-W flux limited (minmod) Yes No No Yes Yes No Yes Yes No No No Yddo Yes
S-W flux limited (Van Leer) Yes No No No Yes No Yes Yes No No No Yedo Yes
S-W flux limited (superbee) Yes No No No Yes No Yes Yes No No No Ndo Yes
S-W MUSCL (minmod) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes
S-W MUSCL (Van Leer) Yes Yes No Yes Yes Yes Yes Yes Yes No No Yes ¥es
S-W MUSCL (superbee) Yes Yes No No Yes Yes Yes Yes Yes No No Yes Yes

proposed method (minmod)
proposed method (Van Leer)
proposed method (superbee)

Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes

Yes Yes Y= Yes Yes Yes
Yes ¥es Wes Yes Yes Yes
YesY¥ssYes Yes Yes Yes

@ For all cases, the grid is made of 500 equally-spaced nodes.

® The time step is constant for all nodes and is such that thénmuax Courant number is 0.001 within the
domain.

¢ Setting the CFL to a value of 0.1 yields the same outcome.

4 The time step is constant for all nodes and is such that thénmuzx Courant number is 0.5 within the domain.

(a) Minmod limiter (b) Superbee limiter

3 . . . . . 3 . . . .
—— Exact solution —— Exact solution

- — S-W 1st-order - — S-W 1st-order
2.5 ©o S-WPOSFL [11] 1 2.5 o S-WPOSFL[11]
¢ Proposed method « Proposed method

T
LR N

L2 2
£ E
o o
X X
< 15 * 15

1 1

0.5 0.5

2005 0 005 01 015 02 025 005 0 005 01 015 0.2 0.25

X, m x,m

FIGURE 1. Comparison between the proposed schemes and the POS#hexfil1] on the basis of density profiles for test case #1. The
density profiles are obtained using a 120-node grid at a tineBams using a time step size such that the maximum Courant nuwitién
the domain is 0.1.

As predicted theoretically in the previous sections, théhoe presented herein does preserve the positivity of ttexmée
native properties as long as the Courant number is less t®arTis is verified to be the case even for the most compressiv
TVD limiter (superbee). Additional test cases reveal that¢ondition on the Courant number is not aleatory. Indewal)lsl
the time step be such that the Courant number slightly exxcéedsomewhere in the domain, negative internal energies or

10
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(a) Van Leer limiter, 120-node grid (b) Van Leer limiter, 120-node grid
11 T T T T T 3 T T T T :
Exact solution —— Exact solution o
- — S-W 1st-order - — S-W 1st-order
1bssey 0 S-W Flux-Limited 2.5r o S-W Flux-Limited 1
- A « Proposed method « Proposed method
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-03 -03 -025 -0.2 -0.15 -0.1 -0.05 -0.05 0 0.05 0.1 0.15 0.2 0.25

X, m X, m
(c) Superbee limiter, 60-node grid (d) Superbee limiter, 120-node grid
3 . . ' T T T 3 T T " T ey
—— Exact solution —— Exact solution
- — S-W 1st-order - — S-W 1st-order
2.5r o S-W Flux-Limited 1 2.5 o S-W Flux-Limited 1
« Proposed method e Proposed method
2 - 2
E E
[*)] o
X 4
S 15 < 15
1 S esees
0.5 : . ‘ : ‘ 0.5
-0.05 0 0.05 0.1 0.15 0.2 0.25 -0.05 0 0.05 0.1 0.15 0.2 0.25
X, m X, m

FIGURE 2. Comparison between the proposed schemes and the camagritiix-limited methods on the basis of density profilesést case
#1. The density profiles are obtained at 0.8 ms using a time step size such that the maximum Courant nuwitién the domain is 0.1.

densities are sometimes obtained.

What makes the discretization stencils outlined hereitiqdarly appealing is their capability to be positivitygserving
while being high-resolution for all wave types. This is reg tase for previous flux-limited positivity-preservingsed-order
accurate methods. For instance, in Ref. [11], a positipigserving flux-limited method (denoted as POSFL) is priesen
and is shown to be second-order accurate. However, POSHit lgh-resolution in the vicinity of contact surfaces winér
introduces excessive dissipation compared to the cororalfl VD schemes. This was attributed to POSFL forcing timétdir
function to be the same over all flux components. But such ighecase for the stencils proposed herein, which allow the
limiter function to have a different value for each flux compat (i.e. component-wise flux limiting). As shown in Fig. 1,
the proposed schemes exhibit considerably higher resaltiian POSFL in the vicinity of the contact surface, eithbew
using the minmod limiter or when using the superbee limikenther, as can be seen from Fig. 2, the difference betwesen th
density profiles obtained with the proposed schemes and titatained with the conventional (non-positivity-presegy TVD
stencils is minimal when solving rarefaction fans, shookeg as well as contact discontinuities. This is true ireesipely of

11
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TABLE 3.
Assessment of relative error of various schemes when gpbome 1D test caséss?

) ) 1 L/2
Relative error on density,— / | — Pexac] Ox
—L/2

prefL
100-node grid 1000-node grid

Method Case#1 Case#2 Case#5 Case#7 Case #1 Case#2 Caseé&®7 Cas
Steger-Warming (first-order) 12.08% 14.25% 10.70% 3.99% 06%. 7.06% 1.10% 1.03%
S-W flux limited (Van Leer) 4.62% - 553% 1.07% 0.66% - 0.64% 2106
S-W MUSCL (Van Leer) 3.99% 835% 6.99% 0.74% 0.48% 1.50% %.79 0.20%
S-W POSFL [11] (Van Leer) 7.74% 13.34% 6.34% 1.53% 1.56% %.63 0.69% 0.28%
proposed method (Van Leer) 5.14% 10.54% 7.24% 1.07% 0.74%12%2. 0.79%  0.21%

2 The time step is constant for all nodes and is such that thénmuaxx Courant number within the domain is 0.1

® The length of the problenh is fixed to 1 m.

¢ The reference density, is fixed to maxp,, pr) With p. andpg being the initial left and right states densities.

4 The relative error is measuredszat 0.8 ms,z = 0.11 ms,z = 0.3 ms, andt = 1 ms for cases #1, #2, #5, and
#7 respectively.

TABLE 4.
List of 2D and 3D test cases and initial conditions.

Left initial state ¢ < 0) Right initial state £ > 0)
Case Description T,K M, M, M. P, bar T,K M, M, M. P,bar
#8 2D enclosure 35 10 -3 0.1 35 10 2 0.1
#9 2D Mach 20 external flow 30 16.38 11.47 0.1 30 16.38 11.47 0.1
#10 3D enclosure 300 -40 20 20 0.1 300 40 -20 -20 0.1
#11 2D channel with wavy-wdll 300 3 0 0.102 300 3 0 0.102

2 The flow is enclosed withir-1 < x < 1m and0 < y < 1m, with a cutout located withir-0.52 < x < Om and
0 < y <0.24m. The grid spacing is fixed td /50) m along both dimensions.

® The flow is enclosed withif < x < 1 mand0 < y < 1 m, with a cutout located withi74/300) < x < (225/300) m
and(124/300) < y < (175/300) m. The grid spacing is fixed td /300) m along both dimensions.

¢ The flow is enclosed withir-0.5 < x < 0.5mand0 < y < Imand0 < z < 1m, with a cutout located within
—(27/158) < x < (27/158)mand0 < y < (53/79)m and0 < z < (53/79) m. The grid spacing is fixed ta /79) m
along the three dimensions.

4 The channel starts at = 0 and ends at = 2 m, with the top wall located at = 0.5 m and the bottom wall located at
y = %sin(3nx) m. The grid is composed df0 x 25 nodes (uniformly spaced).

the limiter used. The high-resolution capability of the pweed method is further confirmed in Table 3 in which the nadat
error on the density is tabulated for various test cases asthes. While a small amount of dissipation is introduceddein
to guarantee positivity-preservation, such is generallyimmal and does not affect appreciably the resolution invileanity of
contact surfaces, shocks, or within expansion fans.

6.2. Two- and Three-Dimensional Euler Flow

Although the method is derived in 1D, it can be applied to 2@ 8B problems by discretizing each derivative through 1D
operators. For instance, when solving the 2D or 3D Euler#gpsin generalized curvilinear coordinates:

d

U oF;
- =0 60

12
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TABLE 5.
Assessment of positivity-preserving capability of vas@echemes when solving the 2D and 3D test cases.

Positivity Preserving?

CFL=0.0F CFL=0.166 CFL=0.25 CFL=0.5
Method Case#8 #9 #10 Case#8 #9 #10 Case#8 #9 #10 Case#8 #9 #10
Roe (first-order) Yes Yes No Yes Yes No No Yes No No Yes No
Steger-Warming (first-order) Yes Yes Yes Yes Yes Yes Yes Yes Y Yes Yes No
Yee-Roe (minmod) No No No No No No No No No No No No
S-W flux limited (minmod) No No No No No No No No No No No No
S-W flux limited (Van Leer) No No No No No No No No No No No No
S-W flux limited (superbee) No No No No No No No No No No No No
S-W MUSCL (minmod) No No No No No No No No No No No No
S-W MUSCL (Van Leer) No No No No No No No No No No No No
S-W MUSCL (superbee) No No No No No No No No No No No No
proposed method (minmod) Yes Yes Yes Yes Yes Yes Yes Yes No No Nb
proposed method (Van Leer) Yes Yes Yes Yes Yes Yes Yes Yes No NMD No
proposed method (superbee) Yes Yes Yes Yes Yes Yes Yes Yes No o NN No

@ The time step is set locally (resulting in a different valoedéach node) according to Eq. (62).

the time derivative is discretized using a first-order Ebleckward stencil and the spatial derivatives are dis@étia conser-
vative form as follows:
1 - . A

— (Ut —ur (FX’“” - FXI“”) =0 61

A )+ 2. : (61)
where the convective flux at th¥; + 1/2 interface,ﬂx"“/z, is obtained using the 1D stencils presented in Section& [se
Egs. (52)-(57)]. In the latted] is the number of dimensiong; is a generalized coordinate such that the spacing betwégn gr
points is 1, andF; is the convective flux in generalized coordinates (see afipdar a full outline of the Euler equations in
generalized curvilinear coordinates).

The solution is advanced in pseudotime using a local timgpitg strategy with the local time step set to the minimum
CFL condition along all dimensions:

1
At = CFL x min (62)

i=1 m}_ax\[/\i],-,r

where CFL is a user-specified constant @nds the eigenvalue matrix in generalized coordinates (speragix). For CFL set
to 1, it can be easily shown that the latter would yield thgéat possible local time step satisfying the CFL conditilmmg
each dimension.

Several 2D and 3D test cases are considered, as listed ia Zabt all cases, the specific heat ratio is fixed to 1.4 and the
gas constant is set to 286 J/KgThe cases considered are particularly difficult to solsiag a discrete method due to the large
initial Mach numbers inducing very strong expansion farthinithe first few iterations. The zones of low pressure antsity
created by these strong expansion fans are shown in Figuaed 8. Clearly, for test cases #8 and #9 the pressure varies in
some areas by 3-6 orders of magnitude within 3-5 grid pof&ithough not shown here, a similar pressure gradient isrvlse
for test case #10. Due to the presence of these large pragsulients within few nodes, the numerical methods are ptone
yield negative densities and internal energies. Furtlemabse the initial conditions and the problem setups arfethat these
large pressure gradients are not aligned with the grid lithese cases serve as an excellent test bed to assess thiétezgaf
the methods at maintaining positivity-preservation in tidirhensional flowfields.

Because the test cases result in flow conditions that areplarly stringent, none of the conventional TVD methods ar
capable of maintaining the positivity of the density and ititernal energy (see Table 5). The lack of success at priegerv
positivity is not only observed for the flux-limited schenies is also observed for the MUSCL schemes. While the MUSCL
approach combined with the minmod limiter is generally paisy-preserving for 1D flowfields, it is here seen not to be
positivity-preserving when used for 2D or 3D problems. Taekl of positivity-preservation is not limited to high Conta
numbers: lowering the local time step from one quarter topereent of the minimum CFL condition is observed not to dffec

13
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(a) Steger-Warming (1st-order) (b) Proposed Method (superbee)
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FIGURE 3. Comparison between the first-order Steger-Warming ndetimal the proposed method on the basis of pressure contours (i
Pascals) for test case #8 after 100 iterations; the gridispéfixed to (1/50) m along both dimensions; the CFL numbdixied to 0.25.

the positivity-preserving capability of the TVD schemasfdct, only two flux discretization methods are seen to berly
capable to preserve the positivity of the determinativepprties at either low or high Courant number: (i) the firder
Steger-Warming method, and (ii) the high-resolution mdtpesented herein.

Interestingly, the Courant number needs to be lowered asidhgber of dimensions is increased in order to guarantee
positivity-preservation. It is recalled that the time stegeds to be set to less than half of the CFL condition whenrsplv
one-dimensional problems (see proof in Section 4.2). Hewevhen solving multidimensional problems, setting theetstep

(a) Steger-Warming (first-order)
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(b) Proposed Method (superbee)
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FIGURE 4. Comparison between the first-order Steger-Warming noetimal the proposed method on the basis of pressure contours (i
Pascals) for test case #9 after 300 iterations; the gridspécfixed to (1/300) m along both dimensions; the CFL numbéixed to 0.25.
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in this manner would sometimes result in negative dengsiti@sternal energies. Through trial and error, it is founat tthe CFL
number must be set to no more thf# and1/6 in 2D and 3D respectively to guarantee positivity-presgove(see results in
Table 5). Such a necessary reduction of the time step foehighmber of dimensions is not specific to the proposed denci
In fact, a similar trend can be observed for the first-ordeg8t-Warming method: as the number of dimensions is inetkas
the CFL number needs to be lowered to ensure that the detstiveiproperties remain positive.

Because the schemes outlined herein achieve positivitggpvation by limiting the second-order terms more sultisign
than the standard TVD stencils, it may be argued that pitgHpreservation is achieved at the expense of resoluBam such
a loss in resolution is verified not to be substantial. Indesdwould be expected from a second-order stencil, the peapo
method results in a much improved resolution of shockwamdsapecially of expansion fans when compared to the fidsror
Steger-Warming method (see Figs. 3 and 4). Further, wheitevas possible to compare the results obtained with thpgsed
schemes to those obtained with the conventional flux-lidniteethods (that is, when the conventional methods did ndd yie
negative internal energy or density), negligible differesiwere observed. This is well illustrated in Fig. 5, whéeady-state

(a) Proposed method (Van Leer limiter)

L

-
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(b) Steger-Warming flux-limited (Van Leer limiter)
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FIGURE 5. Comparison between the proposed method, the convehiidtiascheme, and the first-order Steger-Warming scheme en th

basis of steady-state pressure contours (in Pascalsstarase #11.
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results of a Mach 3 flow in a wavy-wall channel are depictedea@y, there is little to no discernible difference betwdiea
pressure contours obtained with both approaches. Althoagshown here, results obtained for various other tessaasm®irm
that the extra amount of dissipation necessary for positpieservation is typically negligible, and only beconsemificant
when the conventional TVD schemes introduce negativeriatemergies or densities.

7. Conclusions

A new class of flux-limited schemes is proposed for systentooservation laws that is both positivity-preserving aighh
resolution. The schemes achieve high-resolution by extgritie Steger-Warming method to second-order accuraoygjtr
the use of component-wise TVD flux limiters and achieve pasitpreservation by reducing the limiter function suttat the
discretization equation satisfies the rule of the positaefficients.

In ensuring that the discretization equation satisfies tie of the positive coefficients, it is found that the timepsie
restricted by a CFL-like condition. Specifically, for higasolution discretizations of 1D systems of conservatiws| it is
shown analytically that the time step can not exceed halfi@fone obtained through the CFL condition in order to guaent
positivity-preservation. For 2D and 3D systems of congmadaws, it is found empirically that the solution remapasitivity-
preserving as long as the time step does not exceed onemaradtene sixth of the CFL condition, respectively.

Several test cases are considered to assess the pogite#igrving capability of the proposed schemes. The tesscas
consist of the solution of the 1D Euler equations in Cartes@ordinates and of the solution of the 2D and 3D Euler equati
in generalized curvilinear coordinates. Because of thequéarly stringent flow conditions encountered througbstest cases
(e.g. vacuum generation, strong rarefaction fans with #resity varying by 3-6 orders of magnitude within a few gridnts,
Mach 20 flow emanating from a corner, etc), all of the conwmral TVD methods fail to preserve positivity of the density o
of the internal energy for at least one test case. In facy, v methods are observed to be generally positivity-presg: (i)
the first-order Steger-Warming scheme, and (ii) the higloltgion schemes presented in this paper.

Because the discretization stencils presented hereimwazpiositivity-preservation by reducing the limiter fuoat, they
are more dissipative than the conventional TVD methods. évew it is found that the additional dissipation needed for
positivity-preservation is typically negligible. In fgcivhen comparing properties obtained with the proposedmsekeao
those obtained with the conventional TVD methods for sdvest cases (including time-accurate shock-tube probkemas
steady-state multidimensional problems), the differsrare found to be minimal and barely discernible except wherlow
conditions are such that the conventional methods yieldtieginternal energies or densities. Even then, the losssoilution
is small and the solution obtained remains second-orderrate

By allowing the flux limiter to have a different value for eaftiix component (component-wise flux limiting), the method
outlined herein can capture with high resolution contastantinuities as well as shocks and expansion fans. Thisigritrast
to previous positivity-preserving flux-limited schemesiethintroduced excessive dissipation in the vicinity of tam surfaces
by forcing the limiter to be a constant over all flux comporsent

Due to being written in general matrix form, the proposedgite can be used without modification to discretize the finfe
any system of conservation laws as long as the equation®aredeneous of degree one. Positivity-preservation isaguieed
if the system of conservation laws satisfies the rule of tisitipe coefficients, as is the case for the Euler equationsaltisfy
the rule of the positive coefficients, the system of congemdaws must be such that the determinative propertiesaiem
positive when the coefficients of the discretization equratiave all-positive eigenvalues and have the same eigemgess
those of the convective flux Jacobian evaluated at the quoreing node.
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A. Euler Equations and Recommended Eigenvectors

The set of eigenvectors associated with the Euler equationa unique (in fact, in 2D or 3D, there exists an infinity dferent
sets). Because the chosen set of eigenvectors can (i) t#féepositivity-preserving capability of the method andl &iifect the
resolution of the method, it is necessary to implement tigereiectors as outlined below in order to reproduce exakdy t
results shown in this paper.
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A.1l. One-Dimensional Euler Equationsin Cartesian Coordinates

The time-dependent 1D Euler equations can be written ineSrn coordinates as follows:
ou  oF
ot ax

The conserved variables vectd; convective flux vectoF', eigenvalue matrix\, right eigenvector matrix.~!, and character-

istic variables vectoL U are set to:

0 (A1)

.
U=[p pu 5504+ 500> ] (A.2)
F=[pu puw+5pa*> —pua®+ jpu’ ]T (A.3)
A=[u u+a u-a ]D (A.4)

1 u Ju? !
L7 =| 1 uta ;5a+3u°+au (A.5)

1 u—a a4+ 3w —au
_ T

LU=["2p 50 30 ] (A-6)

A.2. Multidimensional Euler Equationsin Generalized Curvilinear Coordinates
The two-dimensional and three-dimensional Euler equatiam be written in generalized curvilinear coordinateols\frs:

d

U oF;
—_— =0 A7
3t L, (.
where the convective flux vector has the following property:
F, =AU =L"A;L;U (A.8)

In the latterd is the number of dimensioné, is the vector of conserved variablés,is a generalized coordinate such that the
spacing between adjacent grid points isdl,js the convective flux Jacobian (i.d, = dF;/dU), A; is the eigenvalue matrix,

andL;! is the right eigenvector matrix.
The conserved variables vectdr, convective flux vecto#, eigenvalue matrix\, right eigenvector matrix.~!, and char-

acteristic variables vectdrtU are set in 2D to:

_ T
U=J"x[p pu pv —=pa’+3pq° | (A.9)
Fr=J""x[ pVi puVi+2Lpa®X;, pvVi+ 1pa’X;n S5pa*Vi+ 1pq?Vi ]T (A.10)
1 1 1P
M=V Vi Viva(xz +x20)E Vi—a(x2 +x2)t | (A.11)
— —~ —~ ~ —~ -T
1 u+aX;, v—aX;, %qz—ka(uX,;z—vX“)
1 u—ay,'.z U+a§,'.1 %q2+a(vy,'.l —uy,'.z)
L;l = =R =R - - (A.12)
I u+aX;, v+aX;, ﬁaz'k%qz"'a(” il +UXi.2)
1 u—aX;, v—aXi» —a’ + %qz_a(uyi.l +U)?i,2)
_ _ T
LU=[5r 5 50 50 ] (A.13)
and in 3D to: .
U=J"x[p pu pv pw S=Fpa®+3pq> | (A.14)
Fr=J"x[ pVi puV;+ 1pa*X;, pvVi+1pa’Xis pwVi+1pa*X;s —5pa’V; + 3pq°V; ]T (A.15)
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1 1 1P
A=V Vi v Vira(x 1 x4 X2 Vi—a (X2 + X2+ x2)? | (A.16)
L' =
— R _ R N R R . =7
1 u+a(Xl-,2+X,-.3) v—aX“ w—aXl-,l %q2+au(Xl-,2+X,-.3)—a(v-i—w)X,-.l
1 M—a)?i,z U+a()?i.l+)?i.3) w—a)?i,z %q2+av()?i.l+Xi,3)_a(u+w))?i.2
1 u—aX;, v—aX,; w+a()?i,1+)?i.2) %qz—kaw(fi,l+)?,»,2)—a(u+v))?i,3
1 u+aX;, v+aXi, w+aX;; ﬁaz'i‘%qz‘i'a(u?m +U?i.2+w§i.3)
1 u—aX;, v—aX;, w—aX; s —a’ + 397 —a (u)?i,l +uXis+ w}?i,3)
L i A17)
LU=[%tp 5o 5o 5o 50 ] (A-18)

In the latter, the flow speed, the contravariant velocity,itiverse of the metric Jacobian, the spatial derivative®fjeneralized
coordinate, and the normalized spatial derivative of theegalized coordinate correspond to:

¢ =uw+v+w (A.19)

Vi=uXii +vXi> +wX; 3 (A.20)

3x1 B.X'Z 3x1 3x2

L R in 2D
39X, 0X> 09X, 0X,

1
7= 23: (@ Ox; 0x;  0xy Ox, Oxs ) 3D (A.21)
2\ OX; 0Xi 41 0Xi2  0X,; 0Xi12 0X, 11
J ((23,,- —1) ax"*‘) in 2D
x = 0% _ S (A22)
" dx J (aijrl 0xj42  0Xj42 3xj+1) in 3D :
0X; 410X 40 0X; 410X 40

1
d 2
)?i._/ =X, (Z Xﬁ_/) (A.23)

Jj=1

whered;; is the Kronecker delta and where a cyclic permutation of tiggcees is implied (with the minimum and maximum
being 1 and/ respectively).
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