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Positivity-preserving High-resolution Schemes
for Systems of Conservation Laws

Bernard Parent�

A new class of flux-limited schemes for systems of conservation laws is presented that is both
high-resolution and positivity-preserving. The schemes are obtained by extending the Steger-
Warming method to second-order accuracy through the use of component-wise TVD flux lim-
iters while ensuring that the coefficients of the discretization equation are positive. A coefficient
is considered positive if it has all-positive eigenvalues and has the same eigenvectors as those of
the convective flux Jacobian evaluated at the correspondingnode. For certain systems of con-
servation laws, such as the Euler equations for instance, this condition is sufficient to guarantee
positivity-preservation. The method proposed is advantaged over previous positivity-preserving
flux-limited schemes by being capable to capture with high resolution all wave types (including
contact discontinuities, shocks, and expansion fans). Several test cases are considered in which
the Euler equations in generalized curvilinear coordinates are solved in 1D, 2D, and 3D. The
test cases confirm that the proposed schemes are positivity-preserving while not being signifi-
cantly more dissipative than the conventional TVD methods.The schemes are written in general
matrix form and can be used to solve other systems of conservation laws, as long as they are
homogeneous of degree one.

1. Introduction

P OSITIVITY-PRESERVATION and high-resolution are two desirable attributes a flux discretization scheme should pos-
sess. High-resolution refers to the capability to capture with few nodes continuous and discontinuous waves while not

introducing spurious oscillations, and can be achieved through flux or slope limiters. Positivity-preservation refers to the ca-
pability to conserve the positivity of the determinative properties. The determinative properties are the propertiesthat must
necessarily be positive for the solution to be within physical bounds. For instance, for the Euler equations, the determinative
properties are the density and the temperature. For the multi-species Favre-averaged Navier-Stokes equations, not only must the
density and the temperature remain positive, but the mass fractions, the turbulence kinetic energy, and the dissipation rate must
also remain positive. Should the latter become negative, the solution is not within physically-admissible bounds and severe
convergence difficulties can ensue. A method that is positivity-preserving prevents such convergence problems by guaranteeing
positivity of the determinative properties.

When solving a scalar advection equation, the Courant upwinded stencil is well-known to conserve the positivity of the
variable solved. However, when extended to second-order accuracy, the Courant scheme is not guaranteed to remain positivity-
preserving. For instance, in Ref. [1], it is shown that second-order accurate schemes generally do not preserve positivity
unless flux limiters are used. As well, in Ref. [2], it is demonstrated that flux limiters are insufficient to guarantee positivity
of reacting advection equations, and a new class of flux limited schemes is thus presented that is positivity-preservingin the
presence of chemical reactions. The latter methods are, however, limited to scalar conservation laws and do not guarantee
positivity-preservation when used to solve a system of conservation laws (i.e. a group of several coupled scalar conservation
laws).

When solving systems of conservation laws, most commonly-used flux discretization schemes (Roe, HLL, AUSM, etc) do
not generally preserve the positivity of the determinativeproperties. On the other hand, two schemes that have been shown
to be positivity-preserving under a CFL-like condition arethe Godunov exact Riemann solver and the Steger-Warming flux
vector splitting scheme [3, 4]. The latter are, however, first-order accurate. When extended to second-order accuracy through
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flux limiters or MUSCL slope limiters, the positivity-preserving property is lost. For this reason, much effort has beendevoted
recently to craft second-order-accurate stencils that aregenerally positivity-preserving (see for instance Refs. [5, 6, 7, 8]). The
latter methods ensure positivity-preservation by reducing the slope limiter function within the MUSCL reconstruction stage.
Because the MUSCL slope-limited approach necessarily requires the vector of conserved variables to be reconstructed for every
cell interface, it requires more computing work than a flux-limited scheme. Better performance could hence be expected from
a flux-limited method over a MUSCL strategy.

In Ref. [9], it is shown that, when used in conjunction with the first-order Steger-Warming scheme, a flux-limited method
can preserve positivity under certain conditions. One of these conditions is that the positive and negative flux Jacobian matrices
need to be rewritten in symmetric form. The approach followsthe work of Friedrichs [10], in which it is proven that the
positivity of a system of equations can be preserved when thematrix coefficients multiplying the vector of conserved variables
within the discrete equation have positive eigenvalues andare symmetric. This is particularly problematic when trying to craft
a positivity-preserving method for compressible flow, because the coefficients yielded by the common discretization methods
(such as Steger-Warming, Roe, HLL, etc) are not symmetric. Then, the discretization schemes need to be severely modifiedto
guarantee positivity-preservation. Such modifications can then result in a significant loss of resolution and/or of thedesirable
monotonic property.

Another approach that has been proposed recently to obtain positivity-preserving flux-limited methods is the so-called “rule
of the positive coefficients” [11], which states that positivity is preserved as long as the coefficients of the discrete equation have
positive eigenvalues and have the same eigenvectors as those of the corresponding flux Jacobians. The advantage of the rule of
the positive coefficients over Friedrichs’ scheme is that itcan be used in conjunction with some commonly-used discretization
methods for compressible flow without requiring a symmetrization of the Jacobian matrices. For instance, using the ruleof the
positive coefficients, a flux-limited second-order accurate extension of the Steger-Warming scheme was outlined in [11] and
denoted as POSFL. The POSFL scheme did not require a modification of the Jacobian matrices and was seen to maintain the
monotonicity of the underlying first-order scheme while being second-order accurate and being positivity-preserving. However,
POSFL was found to have one substantial drawback compared tothe conventional (non-positivity-preserving) TVD schemes:
namely, significantly more dissipation is introduced by thestencil in the vicinity of contact discontinuities. This was attributed
to the POSFL approach forcing the limiter to be the same over all flux components while the conventional TVD stencils allowed
the limiter to have a different value for each flux component (i.e. component-wise flux limiting).

In this paper, a novel positivity-preserving method is proposed for systems of conservation laws that overcomes the short-
comings of previous approaches. The method consists of extending the Steger-Warming scheme to second-order accuracy
through the use of a component-wise flux limiter that satisfies the rule of the positive coefficients. The method proposed is
monotonicity-preserving, positivity-preserving, and isflux limited (i.e., it does not entail the cumbersome MUSCL reconstruc-
tion of the conserved variables at the cell’s interfaces). Further, contrarily to the POSFL scheme presented in Ref. [11], the
method proposed in this paper does not force the limiter to bethe same over all flux components, hence resulting in much
improved resolution in the vicinity of contact discontinuities.

2. Class of Systems of Conservation Laws

The schemes presented herein apply to a system of hyperbolicconservation laws of the form:

@

@t
U C

@

@x
F.U / D 0 (1)

whereU is the vector of conserved variables andF is the vector of convective fluxes. Further, the system of conservation laws
must have the following two properties.

Firstly, the system of conservation laws must be such that the convective fluxF.U / is a homogeneous function of degree
one inU :

F D AU (2)

with the convective flux JacobianA � @F=@U .
Secondly, the system of conservation laws must satisfy the “rule of the positive coefficients”. The rule of the positive

coefficients can be summarized as follows. Consider an equation in which the vector of conserved variables on node A is
determined as a function of the vector of conserved variables on the neighboring nodes B, C, D, etc:

CAUA D CBUB C CCUC C CDUD C ::: (3)
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whereCA;B;C;:: are square matrix coefficients. According to the rule of the positive coefficients, the determinative properties
associated with vectorUA are guaranteed to be positive if the determinative properties associated with the vectorsUB;C;D;:::

are positive and if the matrix coefficientsCA;B;C;::: are positive. A “determinative property” is defined as a property that must
necessarily be positive to yield a vector of conserved variables that is within physically-admissible bounds. For instance, for
the Euler equations, the determinative properties would correspond to the temperature and the density. For the multi-species
Favre-averaged Navier-Stokes equations, the determinative properties would further include the species partial densities as well
as the turbulence kinetic energy and dissipation rate. A coefficient is considered positive if all its eigenvalues are greater than
zero and if its eigenvectors are the same as those of the respective convective flux Jacobian:

CA D L�1.UA/ � DC

A � L.UA/ ; CB D L�1.UB/ � DC

B � L.UB/ ; ::: (4)

with L the left eigenvector matrix andDC a diagonal matrix with the diagonal elements being greater than zero.
The Euler equations (comprising of the mass conservation, momentum conservation, and total energy conservation equa-

tions) have the two properties mentioned above. Indeed, theEuler equations can be shown to have flux vectors that are homo-
geneous functions of degree one and to satisfy the rule of thepositive coefficients [11].

3. Flux Vector Splitting Discretization

When discretizing Eq. (1) on a uniformly spaced mesh using a first-order backward stencil for the time derivative and a conser-
vative stencil for the spatial derivatives, the following is obtained:

U nC1

i � Ui

�t
C

FiC1=2 � Fi�1=2

�x
D 0 (5)

For the Steger-Warming flux vector splitting scheme, the fluxat the interface becomes [12]:

FiC1=2 D F C
i

C F �
iC1

(6)

whereF ˙ � L�1ƒ˙LU with ƒ˙ � 1

2
.ƒ ˙ jƒj/. In the latter,ƒ is the eigenvalue matrix,L the left eigenvector matrix, and

L�1 the right eigenvector matrix.

3.1. Entropy Correction

When conservation laws do not include diffusion phenomena,or when the grid is not refined sufficiently to resolve properly the
diffusion terms, the discretization of the convection derivatives using the Steger-Warming method can yield a solution that does
not satisfy the second law of thermodynamics. This could lead to the formation of entropy-increasing nonphysical phenomena.
One way that such nonphysical phenomena can be avoided is by redefining the eigenvalues in the following manner [13]:

Œƒ ˙ jƒj�r;r ! Œƒ�r;r ˙

q
Œƒ�

2

r;r
C ıa2 (7)

In the latter,ı is a user-defined positive number typically set to 0.1. It is here preferred to apply the entropy correction to all
the eigenvalues even though only the acoustic waves need to be corrected to prevent nonphysical phenomena from forming.
Applying the entropy correction to all the eigenvalues doesnot affect the accuracy of the solution and has the advantageof
allowing larger time steps when integrating the equations.

3.2. Second-Order Extension Using a Component-wise Limiter

The flux at the interface can be extended to second-order accuracy using a component-wise limiter as follows:

FiC1=2 D F C

i
C

1

2
ˆC

iC1=2

�
F C

i
� F C

i�1

�
C F �

iC1
C

1

2
ˆ�

iC1=2

�
F �

iC1
� F �

iC2

�
(8)

In the latter, the flux limiter matrix̂ is a diagonal matrix with the elements on the diagonal being greater or equal to 0 and less
or equal to 2. By setting the limiter matrix to the identity matrix (i.e. ˆ˙ D I ), a piecewise-linear distribution of the convective
fluxes is in effect, hence resulting in a second-order-accurate scheme. On the other hand, setting the flux limiter matrixto zero
(i.e. ˆ˙ D 0) yields a first-order-accurate scheme by forcing a piecewise-constant spatial distribution of the convective fluxes.
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Because the diagonal elements of the limiter matrix are not necessarily equal to each other, it is possible to limit each flux
component independently (i.e. component-wise flux limiting).

For a scalar conservation law, the monotonicity of the solution can be preserved by imposing the Total Variation Diminishing
(TVD) condition on the limiter. For a system of conservationlaws, it is a common practice to impose the TVD condition on
each flux component, independently of the other components (while this does not guarantee monotonicity-preservation of all
properties per se, this yields a solution that is close to being monotonicity-preserving). This can be done by setting the diagonal
elements of the limiter matriceŝC andˆ� as follows:

�
ˆ�

iC1=2

�
r;r

D �

 �
F �

i

�
r

�
�
F �

iC1

�
r�

F �
iC1

�
r

�
�
F �

iC2

�
r

!
(9)

�
ˆC

iC1=2

�
r;r

D �

 �
F C

iC1

�
r

�
�
F C

i

�
r�

F C
i

�
r

�
�
F C

i�1

�
r

!
(10)

where� is the limiter function. The limiter function must fall within a certain admissible limiter region to yield high-resolution
TVD schemes. Three such limiter functions are the Van Leer, minmod, and superbee limiters [14, 15]:

�.b/ D

8
<̂

:̂

max.0; min.1; b// .minmod/

.b C jbj/=.1 C jbj/ .Van Leer/

max.0; min.2; b/ ; min.1; 2b// .superbee/

(11)

When used in conjunction with Eq. (8) the latter limiter functions have the property to yield symmetric discretization stencils.
That is, the discretization stencils are such that the discrete solution of a leftward-travelling wave is symmetric to the one of a
rightward-travelling wave.

For reasons that will become clear in subsequent sections, the flux at the interface can also be written as follows:

FiC1=2 D F C

i
C

1

2
L�1

i
‰C

iC1=2

�
GC

i
� GC

i�1

�
C F �

iC1
C

1

2
L�1

iC1
‰�

iC1=2

�
G�

iC1
� G�

iC2

�
(12)

where‰C and‰� are diagonal matrices and whereG is the product between the eigenvalues and the characteristic variables:

G˙ � ƒ˙LU (13)

Because Eq. (12) must yield the same flux at the interface as Eq. (8), we can equate both equations to obtain:

1

2
ˆC

iC1=2

�
F C

i
� F C

i�1

�
C

1

2
ˆ�

iC1=2

�
F �

iC1
� F �

iC2

�
D

1

2
L�1

i
‰C

iC1=2

�
GC

i
� GC

i�1

�
C

1

2
L�1

iC1
‰�

iC1=2

�
G�

iC1
� G�

iC2

�
(14)

Then, noting that̂ C
iC1=2 andˆ�

iC1=2
are independent of each other and that‰C

iC1=2 and‰�
iC1=2

are also independent of each
other, it follows that the following two equations must hold:

L�1

i
‰C

iC1=2

�
GC

i
� GC

i�1

�
D ˆC

iC1=2

�
F C

i
� F C

i�1

�
(15)

L�1

iC1
‰�

iC1=2

�
G�

iC1
� G�

iC2

�
D ˆ�

iC1=2

�
F �

iC1
� F �

iC2

�
(16)

The former can yield an expression for‰C by multiplying both sides byLi , writing in tensor form, and then isolating the
diagonal elements of the‰ matrix:

�
‰C

iC1=2

�
r;r

D

�
Li ˆ

C
iC1=2

�
F C

i � F C
i�1

��
r�

GC
i � GC

i�1

�
r

(17)

Similarly, we can find an expression for the‰� diagonal elements:

�
‰�

iC1=2

�
r;r

D

�
LiC1ˆ�

iC1=2

�
F �

iC1
� F �

iC2

��
r�

G�
iC1 � G�

iC2

�
r

(18)

It is emphasized that as long as‰˙ is defined according to Eqs. (17)-(18), the flux at the interface determined from Eq. (12)
is equivalent to the flux at the interface determined from Eq.(8). Writing the flux at the interface as in Eq. (12) has some
advantages, as will become apparent when crafting positivity-preserving discretization stencils in Section 5 below.
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4. Necessary Conditions for Positivity-preservation

The rule of the positive coefficients is now used to determinethe restrictions on the limiter matrices and on the time stepwhich
ensure positivity-preservation. It is noted that the conditions derived in this section apply to acomponent-wiseflux limiter
function. That is, the limiter function is not necessarily constant over all flux components. Because of this, the positivity-
preserving restrictions on the maximum allowable time stepand on the limiter function found herein differ significantly than
those outlined in Ref. [11], in which the limiter function was assumed constant over all flux components.

The positivity-preserving conditions applicable to a component-wise flux limiter can be found from the rule of the positive
coefficients as follows. First, we obtain a second-order accurate discrete equation by substituting the second-order accurate flux
at the interface outlined in Eq. (12) into the discrete equation (5):

�x

�t

�
U nC1

i
� Ui

�
D �F C

i
�

1

2
L�1

i
‰C

iC1=2

�
GC

i
� GC

i�1

�
� F �

iC1
�

1

2
L�1

iC1
‰�

iC1=2

�
G�

iC1
� G�

iC2

�

C F C

i�1
C

1

2
L�1

i�1
‰C

i�1=2

�
GC

i�1
� GC

i�2

�
C F �

i
C

1

2
L�1

i
‰�

i�1=2

�
G�

i
� G�

iC1

� (19)

Noting thatF ˙ D L�1ƒ˙LU and thatG˙ D ƒ˙LU , the latter can also be written as:

C nC1

i
U nC1

i
D Ci�2Ui�2 C Ci�1Ui�1 C CiUi C CiC1UiC1 C CiC2UiC2 (20)

in which the matricesCi , Ci�1, etc correspond to the discretization coefficients and are defined as:

C nC1

i
�

�x

�t
I D

�x

�t
.L�1

i
/nC1ILnC1

i
(21)

Ci � L�1

i

�
�x

�t
I � ƒC

i
�

1

2
‰C

iC1=2
ƒC

i
C ƒ�

i
C

1

2
‰�

i�1=2
ƒ�

i

�
Li (22)

Ci�1 �

�
L�1

i�1
C

1

2
L�1

i
‰C

iC1=2
C

1

2
L�1

i�1
‰C

i�1=2

�
ƒC

i�1
Li�1 (23)

CiC1 � �

�
L�1

iC1
C

1

2
L�1

iC1
‰�

iC1=2
C

1

2
L�1

i
‰�

i�1=2

�
ƒ�

iC1
LiC1 (24)

Ci�2 � �
1

2
L�1

i�1
‰C

i�1=2
ƒC

i�2
Li�2 (25)

CiC2 �
1

2
L�1

iC1
‰�

iC1=2
ƒ�

iC2
LiC2 (26)

To obtain a positivity-preserving discretization stencil, the rule of the positive coefficients must be satisfied. The first constraint
imposed by the rule of the positive coefficients is that the eigenvectors of the coefficients must match those of the corresponding
flux Jacobian. Such is not the case for all coefficients. In fact, only the coefficientsCi andC nC1

i satisfy this condition.
It follows that the discrete equation (20) can not satisfy the rule of the positive coefficients directly. Rather, to satisfy the

rule of the positive coefficients, it is necessary to first rewrite the discrete equation (20) as:

C nC1

i
U nC1

i
D C 0

i
Ui C C 0

iC1
UiC1 C C 0

i�1
Ui�1 (27)

In the latter, the coefficientC nC1

i is as defined above while the coefficientsC 0
i
, C 0

i�1
andC 0

iC1
are such that the following

equations hold:

C 0

i
Ui � L�1

i

�
�x

�t
I � ƒC

i
�

1

2
‰C

iC1=2
ƒC

i
C ƒ�

i
C

1

2
‰�

i�1=2
ƒ�

i

�
Li Ui C

1

2
L�1

i
‰C

iC1=2
GC

i�1
�

1

2
L�1

i
‰�

i�1=2
G�

iC1
(28)

C 0
i�1

Ui�1 �

�
L�1

i�1
C

1

2
L�1

i�1
‰C

i�1=2

�
GC

i�1
�

1

2
L�1

i�1
‰C

i�1=2
GC

i�2
(29)

C 0
iC1

UiC1 � �

�
L�1

iC1
C

1

2
L�1

iC1
‰�

iC1=2

�
G�

iC1
C

1

2
L�1

iC1
‰�

iC1=2
G�

iC2
(30)

In Eq. (27) the coefficientC nC1

i satisfies the rule of the positive coefficients by having eigenvectors equal to the ones of the
corresponding convective flux Jacobian and by having positive eigenvalues. On the other hand, the other three coefficients (C 0

i
,

C 0
i�1

andC 0
iC1

) are not generally positive but can become positive under certain conditions.
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4.1. Positivity-preserving Restrictions on the Flux Limiter

Let’s now proceed to find the conditions for which the coefficientsC 0
i�1

andC 0
iC1

are positive. Such will yield restrictions on
the diagonal matrices‰C and‰�, which themselves will lead to restrictions on the flux limiter through Eqs. (17) and (18). The
positivity-preserving restriction on the‰� matrix can be determined from Eq. (30) by rewriting the coefficientC 0

iC1
in terms

of eigenvectors and eigenvalues:

L�1

iC1
DC

iC1
LiC1UiC1 D �L�1

iC1

�
I C

1

2
‰�

iC1=2

�
G�

iC1
C

1

2
L�1

iC1
‰�

iC1=2
G�

iC2
(31)

Multiply all terms by2LiC1 and write in tensor form:

2
�
DC

iC1

�
r;r

ŒLiC1UiC1�
r

D �
�
2I C ‰�

iC1=2

�
r;r

�
G�

iC1

�
r

C
�
‰�

iC1=2

�
r;r

�
G�

iC2

�
r

(32)

Multiply all terms by
�
ƒ�

iC1

�
r;r

:

2
�
DC

iC1

�
r;r

�
G�

iC1

�
r

D �
�
2I C ‰�

iC1=2

�
r;r

�
ƒ�

iC1

�
r;r

�
G�

iC1

�
r

C
�
‰�

iC1=2

�
r;r

�
ƒ�

iC1

�
r;r

�
G�

iC2

�
r

(33)

Divide all terms by
�
G�

iC1

�
r
:

2
�
DC

iC1

�
r;r

D �
�
2I C ‰�

iC1=2

�
r;r

�
ƒ�

iC1

�
r;r

C
�
‰�

iC1=2

�
r;r

�
ƒ�

iC1

�
r;r

�
G�

iC2

�
r�

G�
iC1

�
r

(34)

For the stencil to be positivity-preserving, all the diagonal elements within the matrixDC
iC1 must be positive. Therefore, it

follows that:

�
�
2I C ‰�

iC1=2

�
r;r

�
ƒ�

iC1

�
r;r

C
�
‰�

iC1=2

�
r;r

�
ƒ�

iC1

�
r;r

�
G�

iC2

�
r�

G�
iC1

�
r

> 0 (35)

Divide all terms by
�
ƒ�

iC1

�
r;r

noting that
�
ƒ�

iC1

�
r;r

is always negative (Œƒ��r;r can not be zero because of the entropy correction
Eq. (7)):

�
�
2I C ‰�

iC1=2

�
r;r

C
�
‰�

iC1=2

�
r;r

�
G�

iC2

�
r�

G�
iC1

�
r

< 0 (36)

Regroup similar terms:
�
‰�

iC1=2

�
r;r

�
G�

iC2

�
r

�
�
G�

iC1

�
r�

G�
iC1

�
r

< 2 (37)

If the LHS is negative, the condition is always satisfied. It follows that the condition remains valid if the LHS is subjectto the
absolute value operator: ˇ̌

ˇ̌
ˇ
�
‰�

iC1=2

�
r;r

�
G�

iC2

�
r

�
�
G�

iC1

�
r�

G�
iC1

�
r

ˇ̌
ˇ̌
ˇ < 2 (38)

By applying the absolute value operator on the LHS, the rangeof admissible‰� is further limited, and this results in a more
dissipative stencil. However, as shall be seen in the next section (in which the positivity-preserving condition on thetime step
is derived), it is necessary to do so to ensure that the stencil remains positivity-preserving for a small time step.

Condition (38) can also be rewritten as follows:
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�
r

�
�
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�
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ˇ̌
ˇ̌
ˇ (39)

Starting from Eq. (29) and following similar steps, we can find the condition on the diagonal matrix‰C that ensures that the
coefficientC 0

i�1
is positive. This yields:

ˇ̌
ˇ̌
ˇ
�
‰C

i�1=2
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�
GC

i�2

�
r

�
�
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�
r

ˇ̌
ˇ̌
ˇ < 2 (40)

which can be rewritten to:
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For a conservative stencil, the‰ matrix at thei C 1=2 interface must be determined in the same way as the‰ matrix at the
i � 1=2 interface:

�
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ˇ̌
ˇ

2
�
GC

i
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r�

GC
i�1

�
r

�
�
GC

i
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�
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i
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i�1
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i

�
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ˇ̌
ˇ̌
ˇ (42)

In summary, it can be stated that, should the flux at the interface be determined as in Eq. (12), conditions (39) and (42) must be
satisfied in order to guarantee a positivity-preserving stencil.

4.2. Positivity-preserving Restriction on the Time Step

The rule of the positive coefficients can also be used to determine the maximum time step that guarantees positivity-preservation.
This can be done by starting from Eq. (28), rewriting the coefficient in terms of eigenvectors, multiplying all terms byLi , and
then rewriting in tensor form:

�
DC

i

�
r;r

ŒLi Ui �r D
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(43)

Regroup similar terms together:
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Multiply all terms byŒƒC
i �r;r :

�
DC

i

�
r;r

�
GC

i

�
r

D

�
�x

�t
I � ƒC

i
C ƒ�

i

�

r;r

�
GC

i

�
r

C
1

2

�
‰C

iC1=2

�
r;r

�
GC

i�1
� GC

i

�
r

�
ƒC

i

�
r;r

C
1

2

�
‰�

i�1=2

�
r;r

�
G�

i
� G�

iC1

�
r

�
ƒC

i

�
r;r

(45)

Divide all terms byŒGC
i �r :
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Now note thatŒGC
i �r D ŒƒC
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To satisfy the rule of the positive coefficients, all the terms on the diagonal of the matrixDC
i must be positive. Then, it follows

that:
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Without loss of generality, it can also be stated that:
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The most restrictive condition would occur when the absolute value terms are as high as possible. But, according to the positivity
conditions (38) and (40), the magnitude of these terms can beat most 2. Then:
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7



B. Parent, “Positivity-preserving High-resolution Schemes for Systems of Conservation Laws”,
Journal of Computational Physics, 231 (1), 2012, pp. 173–189.

or, noting thatƒ˙ D 1

2
.ƒ ˙ jƒj/ and isolating the time step, we get:

�t <
�x

2
ˇ̌
Œƒi �r;r

ˇ̌ 8r; 8i (51)

Thus, we find a condition on the time step that must be enforcedto guarantee positivity-preservation. That is, the time step must
be less than half the ratio between the grid spacing and the largest eigenvalue (in magnitude) within the domain. For the Euler
equations, this can be easily shown to yield a restriction onthe Courant number. That is, the maximum Courant number within
the domain should be less than 1/2 to guarantee positivity-preservation.

In summary, the discretization stencil is guaranteed to be positivity-preserving if conditions (39), (42), and (51) are satisfied
conjunctly. Should either one of these conditions not be satisfied, there is no guarantee that the stencil will conserve the
positivity of the determinative properties.

5. Proposed Positivity-preserving High-resolution Schemes

A novel class of flux-limited schemes is now outlined that is high-resolution while satisfying the positivity-preservingconditions
outlined in the previous section. The difficulty in achieving this task lies in determining the optimal limiter that is low enough
to yield a positivity-preserving scheme while being sufficiently high to yield a high-resolution scheme. For this purpose, it is
convenient to express the flux at the interface as in Eq. (12):

FiC1=2 D F C
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�
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iC1
� G�

iC2

�
(52)

whereG˙ D ƒ˙LU , F ˙ D L�1G˙, ƒ˙ D 1

2
.ƒ ˙ jƒj/, L the left eigenvector matrix,L�1 the right eigenvector matrix,ƒ

the eigenvalue matrix,U the vector of conserved variables, and‰˙ some diagonal matrices. In order to obtain a positivity-
preserving scheme that is as close as possible to the standard flux limited Steger-Warming method [see Eq. (8)], the diagonal
matrix ‰� should be as close as possible to the one obtained in Eq. (18) while being within the bounds imposed by the
positivity-preserving condition (39). This can be accomplished as follows:
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(53)

And similarly, the matrix‰C that is as close as possible to the expression (17) while being within the bounds imposed by the
positivity-preserving condition (42) corresponds to:
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where the limiter matriceŝ � andˆC are determined as in Eqs. (9) and (10):
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(55)

where� is the flux limiter function (minmod, Van Leer, superbee, etc) as specified in Eq. (11):

�.b/ D

8
<̂

:̂

max.0; min.1; b// .minmod/

.b C jbj/=.1 C jbj/ .Van Leer/

max.0; min.2; b/ ; min.1; 2b// .superbee/

(56)

The schemes outlined above achieve high resolution throughthe use of component-wise flux limiting and are guaranteed tobe
positivity-preserving as long as the user-specified constant � is within the following range:

0 < � < 2 (57)

The higher� is, the less dissipative the stencil becomes. Because of round-off errors due to the use of real or double precision
numbers, and because of small errors due to compiler optimization,� should be set to a value slightly below 2. For the 1D
problems considered herein,� can be set to as high 1.99 without resulting in negative internal energies or densities. However,
for certain 2D or 3D problems, it is necessary to decrease� further. As well, it is found that fixing� to a value 10% less than
its theoretical maximum helps to prevent divergence at hightime steps. For these reasons,� is set to 1.8 for all test cases here
considered.
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6. Test Cases

Several test cases with particularly stringent conditionsare now considered to assess the capability of the proposed schemes to
maintain positivity of the determinative properties. As well, a comparison with the standard TVD stencils is presentedto assess
the amount of resolution lost through the enforcement of positivity-preservation. Firstly, some test cases are presented solving
the one-dimensional Euler equations in Cartesian coordinates. This is followed by test cases focused on the solution ofthe 2D
and 3D Euler equations in generalized curvilinear coordinates.

6.1. One-Dimensional Euler Flow

The performance of the proposed schemes is first assessed in solving the 1D time-accurate Euler equations:

@U

@t
C

@F

@x
D 0 (58)

where the vector of conserved variablesU , convective flux vectorF and the eigenvectors and eigenvalues of the convective
flux Jacobian can be found in the appendix. The solution is advanced accurately in time through a first-order-accurate explicit
Euler strategy:

1

�t

�
U nC1

i
� U n

i

�
C

1

�x
.FiC1=2 � Fi�1=2/ D 0 (59)

where the convective flux at the interface,FiC1=2, is obtained following the method outlined in Section 5 [seeEqs. (52)-(57)].
Several time-accurate 1D test cases are considered, with the initial conditions outlined in Table 1. For all cases, the specific

heat ratio is fixed to1:4 and the gas constant is set to286 J/kgK. As revealed in Table 2, negative pressures and densities
appear in the solution obtained using well-established fluxdiscretization methods. For instance, both the first-order-accurate
Roe scheme [16] and the second-order accurate Yee-Roe scheme [17] (the latter corresponds to a second-order extension of the
Roe scheme through a minmod limiter applied to the characteristic variables) fail to maintain positivity when either vacuum is
created within the gas or when rarefaction fans of moderate strength make the density decrease significantly. This problem can
not be fixed by lowering the time step: even when the time step is such that the maximum Courant number everywhere in the
domain is less than 0.001, the Roe schemes do not maintain positivity.

The lack of positivity-preservation is also exhibited by some second-order extensions of the Steger-Warming flux vector
splitting method. As outlined in Table 2, a second-order extension of the Steger-Warming scheme through flux limiters is
seen to yield negative internal energies when either strongrarefaction waves decrease the density to low values or whena
Riemann problem occurs on a flow moving at hypervelocities. In those situations, the flux-limited Steger-Warming schemeis
not positivity-preserving, independently of the time stepor limiter used. In fact, even the most diffusive TVD limiteris seen
not to preserve the positivity of the determinative properties.

Alternately, a second-order accurate extension of the Steger-Warming method can be obtained using the MUSCL strategy
[18]. The MUSCL approach achieves second-order accuracy byapplying the TVD limiters on the primitive variables instead
of the fluxes, and then reconstructing the flux vectors at the cell’s interfaces from those extrapolated primitive variables. In
so-doing, the flux discretization scheme becomes positivity-preserving, at least when the minmod limiter is used. However,
when using more compressive limiters, numerical tests showthat MUSCL is not generally positivity-preserving (see Table 2).

TABLE 1.
List of 1D test cases and initial conditions.a

Left initial state (x � 0) Right initial state (x > 0)

Case Description �, kg/m3 u, m/s P , bar �, kg/m3 u, m/s P , bar

#1 Riemann problem 1 0 1 1 0 0.1
#2 Riemann problem at hypervelocities 1 1600 10 1 1600 0.1
#3 Vacuum generation 1 -1000 0.1 1 1000 0.1
#4 Vacuum generation at hypervelocities 1 1000 0.1 1 3000 0.1
#5 Shock reflection 1 1000 0.1 1 -1000 0.1
#6 Shock reflection at hypervelocities 1 3000 0.1 1 1000 0.1
#7 Double rarefaction waves 1 -200 0.1 1 200 0.1

a In all cases, the computational domain is located within�0:5 m � x � 0:5 m.
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TABLE 2.
Assessment of positivity-preserving capability of various schemes when solving the 1D test cases.a

Positivity Preserving?

CFL=0.001b;c CFL=0.5d

Method Case #1 #2 #3 #4 #5 #6 #7 Case #1 #2 #3 #4 #5 #6 #7

Roe (first-order) Yes Yes No Yes Yes Yes No Yes Yes No Yes Yes YesNo
Steger-Warming (first-order) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Yee-Roe (minmod) Yes Yes No Yes Yes Yes No Yes Yes No No Yes No No
S-W flux limited (minmod) Yes No No Yes Yes No Yes Yes No No No YesNo Yes
S-W flux limited (Van Leer) Yes No No No Yes No Yes Yes No No No YesNo Yes
S-W flux limited (superbee) Yes No No No Yes No Yes Yes No No No NoNo Yes
S-W MUSCL (minmod) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No YesYes Yes
S-W MUSCL (Van Leer) Yes Yes No Yes Yes Yes Yes Yes Yes No No Yes No Yes
S-W MUSCL (superbee) Yes Yes No No Yes Yes Yes Yes Yes No No Yes No Yes
proposed method (minmod) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
proposed method (Van Leer) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
proposed method (superbee) Yes Yes Yes Yes Yes Yes Yes Yes YesYes Yes Yes Yes Yes

a For all cases, the grid is made of 500 equally-spaced nodes.
b The time step is constant for all nodes and is such that the maximum Courant number is 0.001 within the

domain.
c Setting the CFL to a value of 0.1 yields the same outcome.
d The time step is constant for all nodes and is such that the maximum Courant number is 0.5 within the domain.
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(a) Minmod limiter
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FIGURE 1. Comparison between the proposed schemes and the POSFL schemes [11] on the basis of density profiles for test case #1. The
density profiles are obtained using a 120-node grid at a time of 0:8 ms using a time step size such that the maximum Courant numberwithin
the domain is 0.1.

As predicted theoretically in the previous sections, the method presented herein does preserve the positivity of the determi-
native properties as long as the Courant number is less than 0.5. This is verified to be the case even for the most compressive
TVD limiter (superbee). Additional test cases reveal that the condition on the Courant number is not aleatory. Indeed, should
the time step be such that the Courant number slightly exceeds 0.5 somewhere in the domain, negative internal energies or
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(c) Superbee limiter, 60-node grid
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FIGURE 2. Comparison between the proposed schemes and the conventional flux-limited methods on the basis of density profiles fortest case
#1. The density profiles are obtained att D 0:8 ms using a time step size such that the maximum Courant numberwithin the domain is 0.1.

densities are sometimes obtained.
What makes the discretization stencils outlined herein particularly appealing is their capability to be positivity-preserving

while being high-resolution for all wave types. This is not the case for previous flux-limited positivity-preserving second-order
accurate methods. For instance, in Ref. [11], a positivity-preserving flux-limited method (denoted as POSFL) is presented
and is shown to be second-order accurate. However, POSFL is not high-resolution in the vicinity of contact surfaces where it
introduces excessive dissipation compared to the conventional TVD schemes. This was attributed to POSFL forcing the limiter
function to be the same over all flux components. But such is not the case for the stencils proposed herein, which allow the
limiter function to have a different value for each flux component (i.e. component-wise flux limiting). As shown in Fig. 1,
the proposed schemes exhibit considerably higher resolution than POSFL in the vicinity of the contact surface, either when
using the minmod limiter or when using the superbee limiter.Further, as can be seen from Fig. 2, the difference between the
density profiles obtained with the proposed schemes and those obtained with the conventional (non-positivity-preserving) TVD
stencils is minimal when solving rarefaction fans, shockwaves, as well as contact discontinuities. This is true irrespectively of
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TABLE 3.
Assessment of relative error of various schemes when solving some 1D test cases.a;b;c;d

Relative error on density,
1

�refL

Z L=2

�L=2

j� � �exactj dx

100-node grid 1000-node grid

Method Case #1 Case #2 Case #5 Case #7 Case #1 Case #2 Case #5 Case #7

Steger-Warming (first-order) 12.08% 14.25% 10.70% 3.99% 3.06% 7.06% 1.10% 1.03%
S-W flux limited (Van Leer) 4.62% - 5.53% 1.07% 0.66% - 0.64% 0.21%
S-W MUSCL (Van Leer) 3.99% 8.35% 6.99% 0.74% 0.48% 1.50% 0.79% 0.20%
S-W POSFL [11] (Van Leer) 7.74% 13.34% 6.34% 1.53% 1.56% 3.63% 0.69% 0.28%
proposed method (Van Leer) 5.14% 10.54% 7.24% 1.07% 0.74% 2.12% 0.79% 0.21%

a The time step is constant for all nodes and is such that the maximum Courant number within the domain is 0.1
b The length of the problemL is fixed to 1 m.
c The reference density�ref is fixed to max.�L ; �R/ with �L and�R being the initial left and right states densities.
d The relative error is measured att D 0:8 ms, t D 0:11 ms,t D 0:3 ms, andt D 1 ms for cases #1, #2, #5, and

#7 respectively.

TABLE 4.
List of 2D and 3D test cases and initial conditions.

Left initial state (x � 0) Right initial state (x > 0)

Case Description T , K Mx My Mz P , bar T , K Mx My Mz P , bar

#8 2D enclosurea 35 10 -3 0.1 35 10 2 0.1
#9 2D Mach 20 external flowb 30 16.38 11.47 0.1 30 16.38 11.47 0.1
#10 3D enclosurec 300 -40 20 20 0.1 300 40 -20 -20 0.1
#11 2D channel with wavy-walld 300 3 0 0.102 300 3 0 0.102

a The flow is enclosed within�1 � x � 1 m and0 � y � 1 m, with a cutout located within�0:52 � x � 0 m and
0 � y � 0:24 m. The grid spacing is fixed to.1=50/ m along both dimensions.

b The flow is enclosed within0 � x � 1 m and0 � y � 1 m, with a cutout located within.74=300/ � x � .225=300/ m
and.124=300/ � y � .175=300/ m. The grid spacing is fixed to.1=300/ m along both dimensions.

c The flow is enclosed within�0:5 � x � 0:5 m and0 � y � 1 m and0 � z � 1 m, with a cutout located within
�.27=158/ � x � .27=158/ m and0 � y � .53=79/ m and0 � z � .53=79/ m. The grid spacing is fixed to.1=79/ m
along the three dimensions.

d The channel starts atx D 0 and ends atx D 2 m, with the top wall located aty D 0:5 m and the bottom wall located at
y D 1

50
sin.3�x/ m. The grid is composed of100 � 25 nodes (uniformly spaced).

the limiter used. The high-resolution capability of the proposed method is further confirmed in Table 3 in which the relative
error on the density is tabulated for various test cases and meshes. While a small amount of dissipation is introduced in order
to guarantee positivity-preservation, such is generally minimal and does not affect appreciably the resolution in thevicinity of
contact surfaces, shocks, or within expansion fans.

6.2. Two- and Three-Dimensional Euler Flow

Although the method is derived in 1D, it can be applied to 2D and 3D problems by discretizing each derivative through 1D
operators. For instance, when solving the 2D or 3D Euler equations in generalized curvilinear coordinates:

@U

@t
C

dX

iD1

@Fi

@Xi

D 0 (60)
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TABLE 5.
Assessment of positivity-preserving capability of various schemes when solving the 2D and 3D test cases.

Positivity Preserving?

CFL=0.01a CFL=0.166a CFL=0.25a CFL=0.5a

Method Case #8 #9 #10 Case #8 #9 #10 Case #8 #9 #10 Case #8 #9 #10

Roe (first-order) Yes Yes No Yes Yes No No Yes No No Yes No
Steger-Warming (first-order) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No
Yee-Roe (minmod) No No No No No No No No No No No No
S-W flux limited (minmod) No No No No No No No No No No No No
S-W flux limited (Van Leer) No No No No No No No No No No No No
S-W flux limited (superbee) No No No No No No No No No No No No
S-W MUSCL (minmod) No No No No No No No No No No No No
S-W MUSCL (Van Leer) No No No No No No No No No No No No
S-W MUSCL (superbee) No No No No No No No No No No No No
proposed method (minmod) Yes Yes Yes Yes Yes Yes Yes Yes No No No No
proposed method (Van Leer) Yes Yes Yes Yes Yes Yes Yes Yes No NoNo No
proposed method (superbee) Yes Yes Yes Yes Yes Yes Yes Yes No No No No

a The time step is set locally (resulting in a different value for each node) according to Eq. (62).

the time derivative is discretized using a first-order Eulerbackward stencil and the spatial derivatives are discretized in conser-
vative form as follows:

1

�t

�
U nC1 � U n

�
C

dX

iD1

�
F

Xi C1=2

i � F
Xi �1=2

i

�
D 0 (61)

where the convective flux at theXi C 1=2 interface,F Xi C1=2

i , is obtained using the 1D stencils presented in Section 5 [see
Eqs. (52)-(57)]. In the latter,d is the number of dimensions,Xi is a generalized coordinate such that the spacing between grid
points is 1, andFi is the convective flux in generalized coordinates (see appendix for a full outline of the Euler equations in
generalized curvilinear coordinates).

The solution is advanced in pseudotime using a local time stepping strategy with the local time step set to the minimum
CFL condition along all dimensions:

�t D CFL �
d

min
iD1

0
@ 1

max
r

ˇ̌
Œƒi �r;r

ˇ̌

1
A (62)

where CFL is a user-specified constant andƒi is the eigenvalue matrix in generalized coordinates (see appendix). For CFL set
to 1, it can be easily shown that the latter would yield the largest possible local time step satisfying the CFL condition along
each dimension.

Several 2D and 3D test cases are considered, as listed in Table 4. In all cases, the specific heat ratio is fixed to 1.4 and the
gas constant is set to 286 J/kg�K. The cases considered are particularly difficult to solve using a discrete method due to the large
initial Mach numbers inducing very strong expansion fans within the first few iterations. The zones of low pressure and density
created by these strong expansion fans are shown in Figures 3and 4. Clearly, for test cases #8 and #9 the pressure varies in
some areas by 3-6 orders of magnitude within 3-5 grid points.Although not shown here, a similar pressure gradient is observed
for test case #10. Due to the presence of these large pressuregradients within few nodes, the numerical methods are proneto
yield negative densities and internal energies. Further, because the initial conditions and the problem setups are such that these
large pressure gradients are not aligned with the grid lines, these cases serve as an excellent test bed to assess the capabilities of
the methods at maintaining positivity-preservation in multidimensional flowfields.

Because the test cases result in flow conditions that are particularly stringent, none of the conventional TVD methods are
capable of maintaining the positivity of the density and theinternal energy (see Table 5). The lack of success at preserving
positivity is not only observed for the flux-limited schemesbut is also observed for the MUSCL schemes. While the MUSCL
approach combined with the minmod limiter is generally positivity-preserving for 1D flowfields, it is here seen not to be
positivity-preserving when used for 2D or 3D problems. The lack of positivity-preservation is not limited to high Courant
numbers: lowering the local time step from one quarter to onepercent of the minimum CFL condition is observed not to affect
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FIGURE 3. Comparison between the first-order Steger-Warming method and the proposed method on the basis of pressure contours (in
Pascals) for test case #8 after 100 iterations; the grid spacing is fixed to (1/50) m along both dimensions; the CFL number is fixed to 0.25.

the positivity-preserving capability of the TVD schemes. In fact, only two flux discretization methods are seen to be generally
capable to preserve the positivity of the determinative properties at either low or high Courant number: (i) the first-order
Steger-Warming method, and (ii) the high-resolution method presented herein.

Interestingly, the Courant number needs to be lowered as thenumber of dimensions is increased in order to guarantee
positivity-preservation. It is recalled that the time stepneeds to be set to less than half of the CFL condition when solving
one-dimensional problems (see proof in Section 4.2). However, when solving multidimensional problems, setting the time step
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FIGURE 4. Comparison between the first-order Steger-Warming method and the proposed method on the basis of pressure contours (in
Pascals) for test case #9 after 300 iterations; the grid spacing is fixed to (1/300) m along both dimensions; the CFL numberis fixed to 0.25.
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in this manner would sometimes result in negative densitiesor internal energies. Through trial and error, it is found that the CFL
number must be set to no more than1=4 and1=6 in 2D and 3D respectively to guarantee positivity-preservation (see results in
Table 5). Such a necessary reduction of the time step for higher number of dimensions is not specific to the proposed stencils.
In fact, a similar trend can be observed for the first-order Steger-Warming method: as the number of dimensions is increased,
the CFL number needs to be lowered to ensure that the determinative properties remain positive.

Because the schemes outlined herein achieve positivity-preservation by limiting the second-order terms more substantially
than the standard TVD stencils, it may be argued that positivity-preservation is achieved at the expense of resolution.But such
a loss in resolution is verified not to be substantial. Indeed, as would be expected from a second-order stencil, the proposed
method results in a much improved resolution of shockwaves and especially of expansion fans when compared to the first-order
Steger-Warming method (see Figs. 3 and 4). Further, whenever it was possible to compare the results obtained with the proposed
schemes to those obtained with the conventional flux-limited methods (that is, when the conventional methods did not yield
negative internal energy or density), negligible differences were observed. This is well illustrated in Fig. 5, where steady-state
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FIGURE 5. Comparison between the proposed method, the conventional TVD scheme, and the first-order Steger-Warming scheme on the
basis of steady-state pressure contours (in Pascals) for test case #11.
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results of a Mach 3 flow in a wavy-wall channel are depicted. Clearly, there is little to no discernible difference betweenthe
pressure contours obtained with both approaches. Althoughnot shown here, results obtained for various other test cases confirm
that the extra amount of dissipation necessary for positivity-preservation is typically negligible, and only becomessignificant
when the conventional TVD schemes introduce negative internal energies or densities.

7. Conclusions

A new class of flux-limited schemes is proposed for systems ofconservation laws that is both positivity-preserving and high-
resolution. The schemes achieve high-resolution by extending the Steger-Warming method to second-order accuracy through
the use of component-wise TVD flux limiters and achieve positivity-preservation by reducing the limiter function such that the
discretization equation satisfies the rule of the positive coefficients.

In ensuring that the discretization equation satisfies the rule of the positive coefficients, it is found that the time step is
restricted by a CFL-like condition. Specifically, for high-resolution discretizations of 1D systems of conservation laws, it is
shown analytically that the time step can not exceed half of the one obtained through the CFL condition in order to guarantee
positivity-preservation. For 2D and 3D systems of conservation laws, it is found empirically that the solution remainspositivity-
preserving as long as the time step does not exceed one quarter and one sixth of the CFL condition, respectively.

Several test cases are considered to assess the positivity-preserving capability of the proposed schemes. The test cases
consist of the solution of the 1D Euler equations in Cartesian coordinates and of the solution of the 2D and 3D Euler equations
in generalized curvilinear coordinates. Because of the particularly stringent flow conditions encountered through these test cases
(e.g. vacuum generation, strong rarefaction fans with the density varying by 3-6 orders of magnitude within a few grid points,
Mach 20 flow emanating from a corner, etc), all of the conventional TVD methods fail to preserve positivity of the density or
of the internal energy for at least one test case. In fact, only two methods are observed to be generally positivity-preserving: (i)
the first-order Steger-Warming scheme, and (ii) the high-resolution schemes presented in this paper.

Because the discretization stencils presented herein achieve positivity-preservation by reducing the limiter function, they
are more dissipative than the conventional TVD methods. However, it is found that the additional dissipation needed for
positivity-preservation is typically negligible. In fact, when comparing properties obtained with the proposed schemes to
those obtained with the conventional TVD methods for several test cases (including time-accurate shock-tube problemsand
steady-state multidimensional problems), the differences are found to be minimal and barely discernible except when the flow
conditions are such that the conventional methods yield negative internal energies or densities. Even then, the loss ofresolution
is small and the solution obtained remains second-order accurate.

By allowing the flux limiter to have a different value for eachflux component (component-wise flux limiting), the method
outlined herein can capture with high resolution contact discontinuities as well as shocks and expansion fans. This is in contrast
to previous positivity-preserving flux-limited schemes which introduced excessive dissipation in the vicinity of contact surfaces
by forcing the limiter to be a constant over all flux components.

Due to being written in general matrix form, the proposed stencils can be used without modification to discretize the fluxes of
any system of conservation laws as long as the equations are homogeneous of degree one. Positivity-preservation is guaranteed
if the system of conservation laws satisfies the rule of the positive coefficients, as is the case for the Euler equations. To satisfy
the rule of the positive coefficients, the system of conservation laws must be such that the determinative properties remain
positive when the coefficients of the discretization equation have all-positive eigenvalues and have the same eigenvectors as
those of the convective flux Jacobian evaluated at the corresponding node.

Acknowledgment

This work was supported for two years by a Pusan National University Research Grant.

A. Euler Equations and Recommended Eigenvectors

The set of eigenvectors associated with the Euler equationsis not unique (in fact, in 2D or 3D, there exists an infinity of different
sets). Because the chosen set of eigenvectors can (i) affectthe positivity-preserving capability of the method and (ii) affect the
resolution of the method, it is necessary to implement the eigenvectors as outlined below in order to reproduce exactly the
results shown in this paper.
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A.1. One-Dimensional Euler Equations in Cartesian Coordinates

The time-dependent 1D Euler equations can be written in Cartesian coordinates as follows:

@U

@t
C

@F

@x
D 0 (A.1)

The conserved variables vectorU , convective flux vectorF , eigenvalue matrixƒ, right eigenvector matrixL�1, and character-
istic variables vectorLU are set to:
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A.2. Multidimensional Euler Equations in Generalized Curvilinear Coordinates

The two-dimensional and three-dimensional Euler equations can be written in generalized curvilinear coordinates as follows:

@U

@t
C

dX

iD1

@Fi

@Xi

D 0 (A.7)

where the convective flux vector has the following property:

Fi D Ai U D L�1

i
ƒi Li U (A.8)

In the latter,d is the number of dimensions,U is the vector of conserved variables,X is a generalized coordinate such that the
spacing between adjacent grid points is 1,Ai is the convective flux Jacobian (i.e.Ai D @Fi =@U ), ƒi is the eigenvalue matrix,
andL�1

i
is the right eigenvector matrix.

The conserved variables vectorU , convective flux vectorF , eigenvalue matrixƒ, right eigenvector matrixL�1, and char-
acteristic variables vectorLU are set in 2D to:
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and in 3D to:
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In the latter, the flow speed, the contravariant velocity, the inverse of the metric Jacobian, the spatial derivative of the generalized
coordinate, and the normalized spatial derivative of the generalized coordinate correspond to:

q2 D u2 C v2 C w2 (A.19)
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whereıij is the Kronecker delta and where a cyclic permutation of the indices is implied (with the minimum and maximum
being 1 andd respectively).
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