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Positivity-Preserving Flux-Limited Method for
Compressible Fluid Flow

Bernard Parerit

The extension of a flux discretization method to second+oaideuracy can lead to some diffi-
culties in maintaining positivity preservation. While tMtJSCL-TVD scheme maintains the
positivity preservation property of the underlying 1ster flux discretization method, a flux-
limited-TVD scheme does not. A modification is here propdsetie flux-limited-TVD scheme
to make it positivity-preserving when used in conjunctiathvthe Steger-Warming flux vector
splitting method. The proposed algorithm is then compaoet/ SCL for several test cases.
Results obtained indicate that while the proposed schemmoig dissipative in the vicinity
of contact discontinuities, it performs significantly leetthan MUSCL when solving strong
shocks in hypersonic flowfields: the amount of pressure to@tsdownstream of the shock is
minimized and the time step can be set to a value typicallydxtbree times higher. While only
test cases solving the one-dimensional Euler equatiortsssiegpresented, the proposed scheme
is written in general form and can be extended to other physiodels.

1. Introduction

DDITIONALLY to conservation, to monotonicity, and to the mwiolation of the second-law of thermodynamics, a

desirable characteristic of numerical methods for congloéss flow is positivity preservation. Positivity presetioa
refers to the capability of an algorithm to guarantee thetpdayg of the internal energy and the density on all nodedtas
solution advances in time, provided the initial density aridrnal energy are positive.

Positivity preservation of the internal energy can be eslggproblematic when the flow speed is in the hypersonigean
with the kinetic energy composing the quasi-totality of tb&l energy. Indeed, since the internal energy is detedhas the
difference between the total and kinetic energy, a smalf-egémation of the kinetic energy (or under-estimationhsf total
energy) by the flow solver can lead to a negative internalggndtven with proper “clipping” of the pressure and temparmat
in order to keep the internal energy positive, it can thendrg difficult or even impossible for the flow solver to continthe
time integration process because the solution has beeantetiriowards non-physical states.

Much attention has hence been given to determine whethemtig®# commonly used flux discretization methods are
positivity-preserving in order to assess the robustneszisfing CFD codes for high speed flow. In Refs. [1, 2], it iewh that
while the Godunov scheme [3], the Van Leer scheme [4] and thgesWarming scheme [5] are positivity-preserving under
a CFL-like condition, the Roe scheme [6] and the HLL schenig¢sie not. To make the Roe and HLL schemes positivity-
preserving, some modifications to the original discreiirastencils are proposed in Refs. [8, 1].

The extension of the flux discretization method to seconmoaccuracy can also lead to some difficulties in maintginin
positivity preservation, although some success has bgemtesl when using Total Variation Diminishing (TVD) algthnins.
Indeed, a MUSCL-TVD scheme [9] is shown in Ref. [10] to maiimtdne positivity preservation property of the underlying
first-order method, and an attempt is made in Ref. [11] to sti@&a minmod-flux-limited-TVD scheme can also maintain
positivity at least when the limiter is asymmetric (thattise limiter achieves second-order accuracy for rightweadeling
waves, but first-order accuracy for leftward traveling wsgvélowever, for a symmetric minmod flux limiter achievingsed-
order accuracy for both leftward and rightward travelingy@s numerical tests indicate that the flux-limited-TVDescte does
not generally maintain positivity.

Because a flux-limited scheme is advantaged over MUSCL byewptiring a reconstruction of the vector of conserved
variables (hence resulting in reduced computing efforfypael modification to the flux-limiters is here presented ttaia
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positivity preservation. A comparison is then made betwihenproposed algorithm and MUSCL for several test cases. To
enable a fair comparison, the same underlying limiters gnoid) and the same underlying first-order monotonic methtehes
Warming Flux-Vector-Splitting) are used in both cases.

2. Physical Model

While the discretization methods outlined hereafter aiig@vrin general form and can be applied to multidimensiemsous
and reacting flows, it is deemed sufficient at this stage togpaomthe performance of the different numerical schemesing
the one-dimensional inviscid and non-reacting Euler @quatfor a perfect gas:

oU  OF _

— 4+ —=0 1
ot 0x (1)
In the latter,U is the vector of conserved variables:
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andF is the convective flux vector:
pu pou
F ou>+ P _ pu> + pa*/y (3)
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wherep, a, u, T, and P are the density, sound speed, velocity, temperature, arsdyre, while,, c,, andy are the specific
heats and the specific heat ratio. Defined&sdU , the convective flux Jacobian corresponds to:

0 1 0
V_B 2
A= ) u —(y = 3)u y—1 (4)
-2 2 3 2
V2 M4 ——yur+ ? yu
2 y—1 2 y —1

The convective flux Jacobian can also be writterlas L~! AL with A the eigenvalue matrix equal fo, u + a,u — a]® and
L™! the right eigenvectors matrix equal to:

1 1 1
1 u u-+a u—a
L= u? u2+ 4 a? u? 4 a? ©)
— — 4 ua — —ua
2 2 y—1 2 y—1

3. Rule of the Positive Coefficients

The rule of the positive coefficients [12] is an approach Widesed to determine the time step restrictions and to ciiaft d
cretization stencils that maintain positivity when solyihe heat equation or the scalar equations of incompredsill. It can
be summarized as follows. Consider a discrete equatioingpllie scalar property, in terms of the properties on the nearby
nodesug, uc, etc:

CalUlp = CglUg + CclUe + CpUp + ... (6)

Then, as long as the coefficients cg, etc are all positive, and as long as the flow property all the nearby nodes is positive,
u, will also be positive.
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Interestingly, a similar rule also exists for the couplediaipns of compressible flow. The rule can be summarized as
follows. Consider the following equation determining theetorU, as a function of the vector of conserved variables on the
nearby nodesl{g, Ue, etc):

CoUy = CgUs + CcUc + CoUp + ... @)

whereC = L~'DL with D a diagonal matrix and. the left eigenvectors of the convective flux Jacobian. Thiesjnternal
energy and density associated with vediQmwill be positive as long as (i) the internal energy and dgressisociated with the
vectorsUs, U, etc are positive, and (ii) the coefficiends, Cs, Cc, etc are “positive”. A coefficient is here considered pesiti
if the following two conditions are met:

1. The eigenvectors associated with the coeffic@®nptust correspond to the eigenvectors of the convective flaghlan
Ay = 0F,/0U,. Similarly, the eigenvectors associated with, C., etc, must correspond to the eigenvectors of the
convective flux Jacobiangs, A, etc.

2. The eigenvalues associated with the coeffic@ntCs, etc must all be positive, but do not necessarily correspottice
eigenvalues of the respective flux Jacobian.

It can be shown that the latter is true as long as the speciicrago is in the range:
I<y<2 (8)
which is the case for all gases.
A proof of the rule of the positive coefficients is given in Apulix A.
4. Steger-Warming Method

When solving the Euler equations on a uniformly spaced mesigta first-order explicit time stepping, the Steger-Waugni
flux vector splitting scheme yields the following discretpiation:
ot —u (FT+FL) - (FL + FD)
+ =
At Ax

0 9)

whereF* = L='A*LU with A* = S(A £ |A]). Making use of the property = AU = L~'ALU, the latter can also be
rearranged in the form:

C/''uMt = Ci\Uimy + CiU; + G4y Up gy (10)
with the coefficients equal to:
et = B (11)
! At
C = %1 —L7'AFL + L7'AT L, (12)
Cioi= L7\ A Ly (13)
Ciyr = —L7 A7 Ligy (14)

In order to maintain the internal energy and the densitytivesithe coefficients must have positive eigenvalues. Ehthe
case for all coefficients exceqt; which may not have positive eigenvalues if the time step igsa too high value. The
Steger-Warming scheme is hence positivity preserving utigecondition of a small time step. The minimum time step for
positivity preservation is derived below in Section 6.1.

For convenience, the discrete equation can be rewrittearisarvative form:

an+l - Ui + E+1/2 - E—1/2

=0 15
At Ax (15)

where the flux at the interface is equal to:

Fip=F' + F]

i+1 (16)
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4.1. Second-Order Extension with MUSCL-TVD

Following the so-called MUSCL-TVD approach outlined in Rgf, the Steger-Warming scheme can be extended to second-
order accuracy by rewriting the flux at the interface in théofeing form:

Fipr2= F~* (UiL+1/2) + F- (UiRjH/Z) 17)

whereU}, | , andUf_, , are vectors reconstructed from extrapolated primitivéades. For instance, the temperature, velocity,

and density needed to reconstrigt | , are extrapolated using a minmod limiter with a leftward ksiash as:

1 (T T,
T, =T + E(Ti —Ti_) max(O, min (1, TL)) (18)

i i—1

On the other hand, the temperature, velocity, and densieglent to reconstruct the vector?, | , are extrapolated using a
minmod limiter with a rightward bias such as:

1 : T, —T,
i =Tis + E(TiJrl —Tit2) max(O, min (1» 7+1)) (19)

i+1 i+2

The latter has been shown to be positivity-preserving [10].

4.2. Second-Order Extension with Flux-Limited-TVD

Alternately, the Steger-Warming scheme can be extendesttinsl-order accuracy through the use of a Total VariationiDi
ishing (TVD) scheme applied directly to the fluxes. For ins& using the minmod limiter, the flux at the interface beesm

+ _F>+

1 . [Fz ! ]r
[Fig12], = [FiJr]r + 2 [F’Jr - F’tl]’ max(O, min (17 [Ftil_iFrtl],))

(20)

: - Fr—Fi,
+[F3], + > [Fi— Fiial, max(O, min (1, [[F—FH]]r))

ijrl —lit2

In the latter, the flux limiter is applied component-wisettweach flux being limited independently. Because the flmitéd
scheme does not require a reconstruction of the vector afezwad variables, it requires less computing effort thanS@u.
However, as can be easily shown through numerical testsattiee is not positivity preserving and can yield negativieinal
energies. This is found to be the case especially for strbaglsvaves occurring within hypervelocity flows.

5. New Positivity-Preserving Flux-Limited Scheme

Making use of the rule of the positive coefficients, it is nossiled to find a second-order accurate discretization istehich
does notinvolve reconstruction of the fluxes while beingtpaty-preserving. A second order accurate extensiomef$teger-
Warming scheme can be written as:

U,'n+l - Ui — _Fi+ + %d)i-:-l/z(Fi-‘_ - Etl) + Fljrl + %¢;+1/2(Fijr] - F;jrz)
At Ax (21)
+ Etl + %45;:1/2(1:1': - thz) + F; + %¢771/2(F}7 - szﬂ)
AXx

whereg = 0 would yield a piecewise-constant distribution of the fluwésle ¢ = 1 would yield a piecewise linear distribution.
Making use of the propertf’ = AU = L' ALU, the latter can also be rearranged in the form:

Cl-nJrlU,-nJrl = C,'_zUl'_z + Ci—lUi—l + Cl'U,' + Cl'+1Ui+1 + Ci+2Ui+2 (22)
with the discretization coefficients equal to:

Ax
[k —— 23
! At (23)
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Ax 1 1
C, = El — (1 + §¢,TH/2) L7'AFL; + (1 + Egbi_l/z) L7'ATL; (24)
1 1 _
Ci = (1 + E‘Pitl/z + §¢z+_1/2) L7 AS Ly (25)
1 1 _ -1 a—
Cp=—(1+ §¢i+1/2 + §¢i71/2 Li+1Ai+1Li+1 (26)
1
Ci72 = _E ,tl/zLi_fle;‘lzLi72 (27)
I _ 1.
Ci+2 = §¢f+1/2LfJ:2A,’+2Li+2 (28)

According to the rule of the positive coefficients, the eigdnes of the discretization coefficients must all be pesith order
to maintain the internal energy and the density positivefodnnately, the coefficient€;_, andC; ., are always negative,
unlessp;, ,,, andg¢;", ,, are set to zero. Then, the scheme would be first-order aecuredeed a second order scheme that
respects the rule of the positive coefficients is not possftihe discrete equation is written as in Eq. (22).

In order to obtain a second order scheme that respects #hefrtiie positive coefficients, it is necessary to first remitie
discrete equation as:

C/UM =CU + C U1 + C Uiy + C/ L Uiy + CL_ Uiy (29)

with C/'*' andC; as defined previously, but with the coefficieat$ , andC/,, now corresponding to:

G, = % 111/2147—11/\?—1141'71 (30)
Cly = —%¢f—1/zL7$1Af+1Li+l (31)
and withC;_ U;_, andC/ U, equal to:
Uy = (1 v aat 1/2) LA LUy = 507 LA S LU (32)
C/ Uiy =— (1 + %¢>i+1/2) L7 A7 Lig Uiy + %¢;+1/2L;+12A;+2Lf+2U,»+2 (33)

In the rewritten discrete equation the only coefficients #ra not positive or that cannot be made positive by choasismall
enough time step ar€;/_, andC/,. Then, to obtain a positivity-preserving scheme, it is sigfit to determine under which
conditions these two coefficients are positive. To do sd,ffioge that Eq. (33) can be rewritten as:

_ 1 _ I 1 _ .
LD LUy = — (1 + §¢i+l/2) LA LU + §¢f+1/2LiizAf+zLi+2Ui+2 (34)

whereD/", | is a diagonal matrix with positive values. Regroup the teimokiding U; 1, together, divide through by the scalar
®,1,, and multiply both sides by the matrix;

[Df + (U + 2970, ]

14—
5¢i+1/2

Lt Uy = L1'+1L‘_1 A LLi Ui (35)

i+2°%i42

BecauseD ™ and A~ are diagonal matrices we can write the latter in tensor fam a

[D;‘I]r,r + (1 + 365,,,) [Ai_+1]r.r

T = [Lit1Uini], = [Li+1L,12A;+2Li+2Ui+2], (36)
§¢i+1/2
Now, divide through byfL;,U;,], and isoIat{D,JSrl])_J_.
1 [Li+1L[_<|l>2Aj_+2Li+2Ui+2:|r 1 _ _
[Ditrl]r,r = §¢i+1/2 [Lis1Uisi] - (1 + §¢i+1/2) [Ai+1]r,r (37)
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But, since all the values within matri®;", , must be positive, it follows that:

| [LI+lLl+2A,+2Ll+2Ui+2:|r 1 _ _
§¢i+1/2 [ i+lUi+1]r - (1 + §¢i+1/2) [Ai+l]r.r =20 (38)
Then, after definings ~ as:
G =ALU (39)
substituting it in the former, and isolatinfg, , ,,, we obtain:
B [Gi_Jrl]r

G < 20— A if the RHS> 0 (40)
e [Gi+1]r - [LiJrlLiJizGiJrz]r

L L7 G G
¢i+1/2§2/maX(9’ [ +1 l+2 l+2] [ 1+1]r) (41)

[Gi+1]r

The latter can be rewritten as:

wheref is a small positive value approaching zero.
To ensure monotonicity, the flux at the interface must bénfrrtimited with a TVD limiter. Although any limiter satisiiyg
the TVD condition can be used, it is here chosen to use the pdrfomction. This results in the additional conditions:

. L], —[Fa]
i1, <max|0, min[1, ——= e (42)
e [Fi+1]r - [Fi+2],
The proposed flux-limited positivity-preserving scheme akso be written in conservative form. Then, the flux at therfiace
can be shown to correspond to:

Fz+l/2 - F + ¢z+1/2( - F+ ) + F+1 + ¢l+1/2 (thrl - thrZ) (43)
where¢; , , corresponds to the combination of both conditions outline@d1) and (42):
2
o <max{0, min{1, (| F~| —[Fy,], F -1 Fil,) - -
s moo il (17 )1 Y5105 e ) )

flux limiter for monotonicity preservation additional limiter for positivity preservation

(44)
and with¢;", | ,, determined in a similar manner:

2

<o il (85D ) o e o))

flux limiter for monotonicity preservation

additional limiter for positivity preservation

In the latter, the flux limitegp corresponds to the minimum over all compone#fits a small positive value approaching zero,
andG* is defined as:
G*=A*LU (46)

By comparing Eqg. (20) and Eqgs. (43-45), it can be seen thatxdifhited stencil can be made positivity-preserving thrbug
two modifications: (i) the limiter function must have the sawalue for all flux components instead of being determined
independently for each component, and (ii) a positivityit@nmust be added to the monotonicity limiter. The limiten€tion
must have the same value for all components because it ismadsto be a scalar (i.ef, is assumed constant over all flux
components) when deriving the condition for positivity ggevation starting with Eq. (35).

6. Time Step Restriction for Positivity Preservation

The maximum time step that can be used while maintainingipitgiis now determined. This can be done by imposing the
condition of positive eigenvalues to the discretizatioaftioients in which the time step appears.
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6.1. First-Order Steger-Warming
For the first-order Steger-Warming scheme, the time stepapmnly within the coefficiend; outlined in Eq. (12):

A
C = A—);] —L7'AYL; + LA L, (47)
We can determine under which condition the coefficient cacdmsidered positive by rewriting it as:
Ax —1 —1 A+ —1 A —
C,‘ = ELZ IL,'—Li Ai L,‘+Li Ai L,’ (48)

with I the identity matrix. Then, after regrouping the 3 terms an®HS, the following can be obtained:

1

A
C =L x [—xl—|Af|} x L, (49)
At
From the latter, it is easy to show that the eigenvalues walliloe positive only if

At; <

J< 2% 50
S wlta (50)

The rule of the positive coefficient hence yields the CFL ¢towl. That is, the Courant number should be less or equal to 1

6.2. Second-Order Steger-Warming

For a second-order accurate scheme, the maximum allowai#estep is further restricted. Indeed, the coefficient fiomcof
the time step for a second-order scheme (see Eqg. (24)) become

C; = i—);L;llLi — (1 + %gb;m) L7'AL + (1 + %¢>i_1/2) L7'AT L (51)
After regrouping the terms on the RHS, the following can b&ted:
G= 1 | = (14 38 39000 ) IN = (380 380 ) A <L (52
The most restrictive condition on the time step occurs wherlitniter functions are maximum, thatis whefi , ,, = ¢, ,, =
1. Then, it can be shown that the eigenvalues would all beigesitly if
At Ax (53)

FE I X ———
30 |ui| +a

The time step hence needs to be set such that the Courant nigrigsss or equal tha§| to ensure positivity preservation of the
second-order accurate Steger-Warming scheme.

7. Entropy Correction

The discretization stencils outlined in the previous smgido not necessarily satisfy the second law of thermodigzam
For instance, the schemes could allow the formation of gtiacreasing aphysical phenomena such as expansion shkicks
minimize the possibility of aphysical phenomena from odiagy, it is recommended [13] to redefine the eigenvalueslasis:

[A £ Al = [Al, £ IALL, +8a2 (54)

with ¢ a user-specified constant typically set to 0.1. This can biéyeshown through the use of the positive coefficients not to
affect the positivity preservation of the proposed schatimit reducing slightly the maximum allowable time step.ehsure
that aphysical phenomena do not form, the entropy cormecteeeds only be applied to the acoustic waves: that is, oely th
u + a andu — a eigenvalues need to be corrected while#heigenvalue does not require any correction. However, nigader
tests indicate that applying the entropy correction toigkevalues increases significantly the robustness of ggesiVarming
scheme by permitting the use of higher time steps while fettihg the accuracy of the solution. For this reason, itéSgrred

to here apply the entropy correction to all the eigenvalues.



B. Parent, “Positivity-Preserving Flux-Limited MethodrfGompressible Fluid Flow”,
Computers & Fluids, Vol. 44, 2011, pp. 238-247.

8. Test Cases

Several test cases were run on a digital computer to assegetformance of the positivity-preserving flux-limitecheme
compared to the other methods. The cases include vacuumagiene strong shock reflection, and shocktube problems. In
all cases, the Steger-Warming, MUSCL, and the proposediyatspreserving flux-limited scheme (POSFL) maintaireth
positivity of the internal energy and density. On the othaardh the non-corrected flux-limited TVD scheme is seen tostiones
yield negative internal energy.

Although not all test cases necessitate the use of the gntapection, it is preferred to set the entropy correctiactdr
6 to 0.1 for all problems. This is done to confirm that the POSEhesne is positivity preserving when used along with the
entropy correction, because the latter is generally redisr more complex flowfields.
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FIGURE 1. Test Case 1. Comparison of the speed of sound profilesnebtavith the proposed positivity-preserving flux-limitecheme
(POSFL) and the MUSCL scheme.
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FIGURE 2. Test Case 1. Grid convergence study of the sound speeith withexpansion fan and contact discontinuity for (a) MUS®id
(b) POSFL.
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FIGURE 3: Test Case 1. Grid convergence study of the sound speeih whthshockwave for (a) MUSCL and (b) POSFL.

8.1. Test Case 1: Riemann Problem in Air at Rest

The first test case consists of a Riemann problem with thialicibnditions set to:

103300 Pa forx <0.5m

=1kg/m®, u=0m P =
p o/ /s 10000 Pa  forx > 0.5m

(55)

Due to the initial pressure difference, the latter gensrateightward traveling shock and a leftward traveling exgiam fan
separated by a contact discontinuity. Since the shock gifnesnd velocities are moderate, all schemes considered cou
preserve positivity of the density and internal energy. dtie is made up of 200 nodes equally spaced and the time stejgls
that the Courant number is at the most 0.3. The entropy disrefactors is set to 0.1 for all schemes. Although not shown,
the entropy correction is here noticed to have negligiblesiat on the properties.

A comparison between the MUSCL scheme and the proposedvitysitreserving flux limited (POSFL) scheme is shown
in Fig. 1 on the basis of the speed of sound. The proposed sclseseen to perform as well as MUSCL in the expansion fan
and shock regions. However, POSFL is seen to be more disgipathe vicinity of the contact discontinuity, with moredes
required to achieve the same resolution. Additional testicate that this is not due to the additional limiter neetbeensure
positivity preservation. Rather, it is attributed to thmitier function being the same for all flux components instefbleing
determined independently for each component.

This is confirmed by a grid convergence study (see Figs. 2 anth grid convergence study shows that POSFL exhibits

essentially the same order of accuracy as MUSCL in the wicofithe shockwave and within the expansion fan, while being
more dissipative in the vicinity of the contact discontirgui

8.2. Test Case 2: Riemann Problem in Air Moving at Hyperveloities

The second test case consists of a Riemann problem withitteé @onditions set to:

s 1033000 Pa forx < 0.5m
p=1kg/m’, u=1600m/s, P = (56)
10000 Pa forx > 0.5m

As for the previous test case, the grid is composed of 200llgegeaced nodes and the entropy correction fagtsrset to 0.1.
The entropy correction is verified not to impact noticeably properties.

This test case is significantly more difficult to solve thaa pievious one due to the strong shock and expansion fargtakin
place on a flow already moving at hypervelocities. In factewhising the non-corrected flux-limited scheme, it is nosjie
to obtain a solution due to negative internal energies apmea the first few iterations, independently of the timepssize.
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FIGURE 4. Test Case 2. Comparison of the pressure and velocity gsafibtained with the proposed positivity-preserving fiuxted
scheme (POSFL) and the MUSCL scheme.
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CFlmax=0.9 N CFLmax = 0.9
Exact
2200t 1 2200} 1
XY @
£ = -
= 2000} { % 2000 & ]
1800} 1 1800F g ) 1
1600 ‘ ‘ ‘ : 1600 - ‘ b
0.4 0.5 0.6 0.7 0.8 0.9 0.4 0.5 0.6 0.7 0.8 0.9
X, m x, m

FIGURES. Test Case 2. Effect of the Courant number (here denotelebgdronym CFL) on the velocity profiles of (a) the MUSCL sckem
and (b) the proposed positivity-preserving flux-limitetheme (POSFL).

When using the positivity-preserving MUSCL and POSFL scbgnit is possible to obtain a solution as long as the Courant

number is less than 0.9.

A first comparison between the two schemes is performed aaman Courant number of 0.3. In Fig. 4 the pressure and

velocity profiles indicate that POSFL is slightly more d#fwe through the expansion fan but captures the shockwabheuti
introducing an overshoot. The difference between the tesbitained by both methods is not so significant.

However, when the time step size is raised, a more subdtdifference between the two methods is observed. Figure 5
shows the impact of a raise in the maximum Courant number fi@rto 0.9 on the velocity profiles. While both schemes
maintain the internal energy and the density positive, MU®&hibits much more severe even-odd node discoupling of the

properties.
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FIGURE 6. Test Case 3. Comparison of the pressure profiles obtaiitedhe proposed positivity-preserving flux-limited sche@®OSFL)
and the MUSCL scheme (every second node is not shown).

8.3. Test Case 3: Vacuum Generation

The third test case consists of the following initial coratis:

. —1000m/s forx <0.5m
P =10000Pa p=1kg/m’, u= (57)
1000 m/s  forx >0.5m

Because the flow on the left of the domain moves leftward aedfltw on the right of the domain moves rightward, two
rarefaction waves are created, eventually resulting ircthation of a vacuum in the central portion of the domain.sTast
case (or a variant) is a particularly difficult problem tov@humerically because the pressure and density decrease g

of magnitude within only a few nodes.

A comparison between the various discretization schenteresdone at a time of 0.3 ms, with the number of nodes fixed to
400 and the maximum Courant number fixed to 0.3. The pressafieg obtained with the POSFL and MUSCL schemes are
compared to the exact solution in Fig. 6. It is seen that bollesies remain positivity-preserving, with POSFL beingtgly
closer to the exact solution.

Several other test cases were computed in which a vacuumreated, including some in which the vacuum took place
on a flow moving at hypervelocities. In all cases, both MUS@d # OSFL maintained the positivity of the density and the
internal energy.

9. Conclusions

To help assess the positivity preservation property of migakemethods, or to help craft new positivity-preserviegesmes for
compressible flow, a simple rule called the “rule of the pesitoefficients” is here presented. According to the lattescheme
is guaranteed to preserve the positivity of the internafgyand density as long as the eigenvalues of all coefficientse
discretized equation are positive.

Using the rule of the positive coefficients, a new positiptgserving flux-limited second-order accurate extensiahe
Steger Warming scheme is proposed. When compared to MUSSL|ts obtained for several test cases indicate that the
proposed scheme (POSFL) captures equally well expansiendad shockwaves but is more dissipative in the vicinity of
contact discontinuities. One advantage that POSFL does offer MUSCL is more accurate results at a higher time step
when solving hypersonic flows. For such cases, the new méthexhibits a significant reduction of pressure overshouaire
downstream of strong shocks and (ii) allows the use of a tit|ee generally two or three times higher while not introdgcin
more discoupling of the properties between even and oddsnode

11
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The rule of the positive coefficients is also used to detegrttie maximum time step that maintains the positivity-pméag
property. Itis found that the maximum Courant number thasprves positivity drops from 1 towhen the Steger-Warming
scheme is turned second-order-accurate through flux lisaite

The method proposed in this paper is used solely in conjometith the Steger-Warming flux discretization scheme aerd th
minmod limiter to solve the one-dimensional Euler equatidBecause the proposed method is written in general forranit
be used with any other TVD limiter while remaining positypreserving. However, when used in conjunction with ofhec
discretization schemes, the positivity-preserving prgpie maintained only if the discretized equation can benghto obey
the rule of the positive coefficients. Further, should a ptatsnodel other than the one-dimensional Euler equatiersobved,
positivity-preservation is only guaranteed as long astteaf the positive coefficients can be extended to such phisiodel.

A. Rule of the Positive Coefficients

This section gives a proof of the “rule of the positive coédfits” for the one-dimensional Euler equations. The rul¢hef
positive coefficients can be used to determine under whaditons a scheme is positivity-preserving and to craft a new
positivity-preserving flux-limited stencil.
The rule can be summarized as follows. Consider the follgwiquation determining the vectby, as a function of vectors
Us, Ug, etc:
CoUn = CgUg + CcUc + CoUp + ... (A.1)

whereCU = L™'DLU with D a diagonal matrix and witl. the left eigenvectors. The eigenvectors associated with th
coefficientC, correspond to the eigenvectors of the convective flux Jacalhi = dF,/0U, with F, determined fronU,.
Similarly, the eigenvectors associated with, Cc, etc, correspond to the eigenvectors of the convective fioaldiansdg, Ac,
etc.

According to the rule of the positive coefficients, the inedrenergy and the density of vecidg are necessarily positive if
(i) the internal energy and the density of vectbks Ue, etc are positive and, (ii) if the elements on the diagonatices D,,
Dy, etc are all positive.

To prove the latter, it is sufficient to prove that the signh# internal energy and density is conserved within the fatig
equation:

(L'"DYL)\Uy = (L7'DTL)gUs + (L™' D" L)cUc (A.2)

whereD,f, . are positive diagonal matrices afg ; . are the right eigenvectors of the flux Jacobian matritgsc. To do so,
notice that the flu.~' D™ LU can be written as:

L7'DYLU =& L7 + &L + &L (A.3)

with L', L;', andL3! the right eigenvectors:

1 1 1
Li'=| u L' = uta L' = u—a (A.4)
1 a2 a?
5“2 %Mz‘i‘ua“r‘ﬁ %uz_ua‘i‘ﬁ
and¢,, &, and&; some positive scalars:
D (y—1 D D
£ = M £ = P> £ = P (A.5)
14 2y 2y
The substitution of Eq. (A.3) in Eq. (A.2) yields the follawg vector equation:
ELT + 6L+ 6L, = (BiLT + &L + &L, + (B LT + 6L + 5L, (A.6)
The latter can be rewritten as:
EnLy +Enly, +Euly = by +Eely) + Esaley + 6aily +6clc, + &l (A7)

The latter vector equation corresponds to the followingéhscalar equations (we here use the shorthand nofatian,, +
Exr + Eas, and similarly forgs and&e):

Erx =6+ & (A.8)
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SAMA + (gAz - gA3)aA = SBMB + (SBZ - gsa)as + ég.cuc + (ég.cz - ég.ca)ac (A_9)

1 + a? 1 + &g3)a?

E&”i + (5nz — ns)uaan + % = Eés”é + (&s2 — &zs)ugas + (SM%T)B
. Y o + £ Y (A.10)

+ Egcué + (Eco — Ecs)ucac + S L e
y—1
After expanding Eq. (A.8), the following is obtained:

(2(y = DD, + D+ DY) xpa = (2(y — 1) Dd, + D, + D) xpe + (2(y — )DZ, + DZ, + DZ) xpc A1D)

positive if y>1 positive if y>1 positive if y>1

Fory > 1, and shoulgg andp. be positive, them, will also be positive since all the coefficients multiplyitige densities are
positive. Then, it can be stated that Eq. (A.2) preservesitreof the density as long as> 1.

To determine the conditions under which the sign of the makenergy is preserved, first isolaig in Eq. (A.9) and
substitute in Eq. (A.10). After some algebra, the followaxgression for the speed of sound is obtained:

(gAz + éns _ no — &3)2) @2 = (Esz + &3 _ (&2 — 553)2) a2+ (Ecz + &cs _ (bc2— Ecs)z) a2
y—1 28x AT y—1 28x 8 y—1 28n ¢
((s2 — ea)as — (§c2 — Scs)ac)z (Sé + &sbc + Sé) (ug — Mc)2
* %, * %, (A12)
_ (bc(ug —uc) — (§s2 — 553)03)2 _ (a(ug —uc) + (§cz — écz)ac)z
28, 28,

Since the square of the sound speed is proportional to tameltenergy for a calorically perfect gas, it follows thaptrove
the positivity preservation of the internal energy, it ifisient to prove the positivity preservation of the squaféhe sound
speed. Consequently, let's proceed to find the conditions/fach Eq. (A.12) preserves the sign of the square of thedspée
sound. For this to occur, the sign of the RHS must be the sarieaign of the coefficient preceding. Consider the case for
which the RHS is positive. Then the coefficient precedipignust be positive:

EAZ + §A3 _ (éAZ - $A3)2 > 0
y—1 28,

Then, recalling tha, = & + £az + £as, and recalling thaga, > 0, £4, > 0, andé,; > 0, it follows thaté, > £a, + £a5. Then,
the latter equation becomes:

(A.13)

SAZ + SA3 (SAZ - SA3)2

- 0 A.14
y—1 2(n2 + 6ns) g ( )

Further, SinCe&a, + £as > £ar — £ns:

SAZ + SA3 _ (EAZ + §A3)2 >

y—1 2(6n2 + €a)
After a few simplifications, the following can be obtained:

0 (A.15)

3—y

( )
y—1

which entails they range:
l<y<3 (A.17)

Having determined the range yielding a positive coefficient preceding tifeterm in Eq. (A.12), let’s proceed to determine
the conditions for which the RHS of Eq. (A.12) is positive.d@so, split the RHS into three groups of terms:

RHS(A.12) = RHS(A.12), + RHS(A.12), + RHS(A.12); (A.18)

with:

(A.19)

€ao + &es B (€s2 — 553)2) a2 i &+ %SBEC)(MB —uc)?

RS = (y—l 2, 2,
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_ (Ec(us —uc) — (§ar — 533)08)2

26a
_ Eot b (Eca—Ece)” 5 (Eé + %EBEC)(L‘B —uc)?
RHSA.12), = ( - — 2%, ) ac + 2%, (A.20)
_ (Se(us —uc) + (§co— écz)ac)2
26a
RHS(A.12); = ((6e2 — %-BS)GBZ_E(%-CZ —&cs)ac) (A.21)

Since RH$A.12); is always positive due t§, being always positive, it imposes no condition on the vadidge ofy. Now
proceed to determine when RHS12), > 0:

(EBZ +&s  (Sea— 583)2) 5 (Sé + %SBSC)(”B —uc)? (c(us —uc) — (&s — 583)33)2
— as + — >
y—1 284 ® 28, 284

To prove under which conditions the latter is true, first defisuch that the following holds:

0 (A.22)

as = {lug — uc| (A.23)
After substituting the latter in the former and after doinlgjteof algebra, the following is obtained:

Eoo+ &as (8o — &ea)’ &séc 2 Ec(ug — uc)(§e2 — Eea)lus — uc
( - - . 1%, (ug —uc)” + Es >0 (A.24)

The most stringent condition would be when the last term erLtHS is negative. For such a case, (A.24) can be rewritten as:

) 0 (ug —uc)® +

(EB;"_‘ ?33 _ (EBZ ;Agsay) Cz(us . Mc)2 + iB—i:(uB . Mc)2 . Ec(”B - ucéjész - §B3|§ -0 (A.25)
Now, divide through by(ug — uc)?:
SBZ + EB?) (SBZ - SBB)2 2 SBSC ECIEBZ - EB3|§
(o - g e e - (426
But, becauség, + &3 > |£s, — £ss| @and becausg; > &g, + £gs, (A.26) becomes:
EBZ + EBS _ (EBZ + SBS)Z) 2 (SBZ + EBS)EC _ SC(EBZ + %‘BS)C 0 A 27
(55 B )T B (A27)
After dividing through by, + &3 and multiplying through b¥,, the following is obtained:
( o (T 533)) ¢+ % —&¢>0 (A.28)
y—1 4
But, becausé; > &, + &, (A.28) can also be written as:
(2 -8)e+E-wo (A29)
y—1 4
Recall that, = & + & and rearrange:
( oy (2_V)§B)§2+ f_trso0 (A.30)
y—1 y—1 4
Because; andé. are independent, (A.30) yields two conditions:
wy >0 and izz + fo _ £L >0 (A.31)
y—1 y—1 4
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which simplifies to (noting thalz andé&. are positive):
2— 1 1
V50 and — 4650 (A.32)
y—1 y—1 4
Both conditions yield a range o¢f of:
I<y<?2 (A.33)

As long as the latter is satisfied, it is guaranteed that RHE2), > 0. Similarly, it can be shown that the same restriction on
the specific heat ratio guarantees that RM32), > 0. It follows that Eq. (A.2) preserves the sign of the squarthefsound
speed (and hence, of the internal energy) as long as thdisgeat ratio is in the rangk< y < 2.

The “rule of the positive coefficients” can hence be sumnear&s follows. For a discrete equation of the form:

CAUA = CBUB + CcUc + CDUD + ... (A34)

The internal energy and density associated with veldfowill be positive as long as (i) the specific heat ratio is in thege
1 < y <2, (i) the internal energy and density associated with treorsUs, U, etc are positive, and (iii) the coefficients,
Cs, C., etc are “positive”. A coefficient is here considered pwsiif the following two conditions are met:

1. The eigenvectors associated with the coeffic@niust correspond to the eigenvectors of the convective floghlan
Ay = 0F,/0U,. Similarly, the eigenvectors associated with, C., etc, must correspond to the eigenvectors of the
convective flux Jacobiangs, Ac, etc.

2. The eigenvalues associated with the coeffic@ntCs, etc must all be positive, but do not necessarily corresporide
eigenvalues of the respective convective flux Jacobian.
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