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Generalized Ohm’s Law and Potential Equation in
Computational Weakly-1onized Plasmadynamics

Bernard Pareiit Mikhail N. Shneidef and Sergey O. Macheiet

A variant of the generalized Ohm’s law that is suited for a kiy#onized multicomponent
plasma in a magnetic field is here derived. The latter takescionsideration the current due to
the non-neutrality of the plasma, the current due to the efédict, and the currents due to the
ion slip associated with each type of ion. An equation fordteetric field potential applicable
to a non-neutral multicomponent plasma in the presence dadgnetic field is then presented.
Despite some similarities between the potential equatimhthie Poisson equation, it is argued
that the discretization of the potential equation cannadmmplished in the same manner by
using only central differences. It is here proven (and sgbeetly verified through a test case)
that when the plasma exhibits conjunctly a high Hall parametd a high electrical conductivity
gradient, the centered stencils introduce spurious asicitis which can lead to severe numerical
error. A novel discretization of the potential equationsisting of a blend of central and upwind
differences is then presented. The proposed scheme isstamty monotonic for any value of
the Hall parameter and is second-order accurate excepg withity of discontinuities.

1. Introduction

EVERAL applications of weakly-ionized plasma technolagier improving the performance of aircraft have recently
been the subject of considerable interest. One possiblicappn is aerodynamic flow control through virtual bodies
created by heat deposition using electron beams or angiepf external ionizer [1, 2]. Other applications are ceaden the
force exerted on the airflow due to magnetohydrodynamicacteon (MHD) or electrohydrodynamic interaction (EHDh&
EHD interaction (otion wind) is suspected to be one of the mechanisms responsible fhighesuccess of plasma actuators
in preventing or delaying boundary layer separation [3gmancing jet mixing [4], in keeping the flow attached on ineb
blades [5], or in controlling the vortices above a delta wjd On the other hand, the MHD interaction could be useful in
controlling the inlet flowfield [7, 8], in suppressing bounglayer separation [9], in imparting momentum to a gas 1N}, or
in generating electrical power aboard a flight vehicle tigtoa MHD generator [12, 13].
Despite some success using the weakly-ionized plasmadbxdies, there remain several key physical phenomenatbat a
still not well understood. For instance, it is not clear wiggtplasma actuators achieve flow control through the EH&¥aation
or through heating, or how much of the Joule heating lossesrobd in a MHD generator occur within the plasma sheath. To
obtain a better understanding of the physical phenomeisadésirable to obtain more detailed computational results
A computational study of plasmas generally requires th@lkamlisolution of the Navier-Stokes equations to obtain thk b
flow properties and of the Maxwell equations to obtain thetele and magnetic field distributions. However, when a iplas
is weakly-ionized (that is, when the fraction of the gas moles that are ionized are in the range® to 10~*) and when
the applied magnetic field does not vary in time, it can be shthat the sole solution of the electric field potential pd®s
a reasonable approximation to the electromagnetic field®e potential equation is derived from the so-called “gelirrd
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Ohm’s law” which provides an algebraic expression linkihg turrent density to the electric and magnetic fields [14]:

138 ,Be,Bi

J=0(E+V xB)-— Jx B+ (JxB)x B (1)
| B |B|?
Hall current current due to ion slip

with o the conductivity and wittg; and 8. the Hall parameter for the ions and the electrons, respdgtivhe latter form of
the generalized Ohm’s law (or a variant including the effafcthe electron pressure gradient) is the backbone of thentec
numerical methods solving weakly-ionized flowfields. Hoeewvhile Eq. (1) takes into account the Hall effect as well as
the ion slip effect, it suffers from the limitation of beingg@licable to a plasma in which only one type of positive iofistx
alongside the electrons. This can be problematic when nsszhjunction with fluid flow solvers that include 3 or more fed
species. Several attempts have been made to overcomedhisashing (see for instance Ref. [15, p. 361] and more régent
Refs. [16, 17]). However, the latter fell short of yieldinglased-form expression for the current that is specifidalipred to

a weakly-ionized gas and that can be readily implementeddR[@ code.

The first part of this paper hence consists of presenting &adiem of a variant of the generalized Ohm’s law that is
specifically suited to a weakly-ionized multicomponentpha. The form of the generalized Ohm'’s law presented hemkést
into consideration the Hall current as well as the separatesiip currents associated with each type of ion. The second
part of this paper presents a novel discretization of thetidefield potential. The discretization of the potentiguation
has so far been accomplished through second-order acaeatered stencils (see Refs. [13, 18] for instance). Thss ha
proven to be a successful strategy. Indeed, the potentiedtims can be written as a diffusion equation, and the difus
derivatives can generally be discretized successfullyguseéntered stencils. But, as will be proven subsequentlyisnpaper,
this discretization approach fails when the plasma exhitonjunctly a high Hall parameter and a high electrical cotidity
gradient. In the plasma regions with such characteridtiescentered stencils introduce spurious oscillationgkwban lead to
severe numerical error. As a remedy for this problem, a neardiization stencil for the potential equation is heregpszd.
The proposed scheme is consistently monotonic for any \@ltlee Hall parameter and is second-order accurate excéipein
vicinity of discontinuities.

2. Plasma Conservation Equations

Despite its name, the generalized Ohm’s “law” is not styiatlaw because it can be derived from more basic physicatipitis.
These more basic physical principles are the principle okeovation of mass and the principle of conservation of muiore
applied to each charged species. In this section, a shdin@of the momentum and mass conservation equations ofdsena
species is given, along with simplified forms applicable teemkly-ionized plasma.

2.1. Charged Species Momentum Conservation

Denoting a particular species with the subscript/supgtskr the inviscid form of the momentum equation can be written as

‘ N,
v +m Ny V* . VVE = C,N,(E + V¥ x B) — —ICk| L
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with m; the mass of the ion or electrofi is the charge of the ion or electron under considerationgequ-¢ for the electrons,
+e for the singly-charged positive ions,e for the singly-charged negative ions2e for the doubly-charged negative ions,
etc.), V¥ the species velocity (including drift and diffusiorl);" the velocity of the neutralgy, the species mobilityy;, the
species number density,P, the pressure gradient vector of the species under conser® the electric field vector, ani3
the magnetic field vector.

In the latter, the forces originating from the shear stressel from the collisions between charged species are adsome
be negligible compared to the forces originating from thiéisions of the charged species with the neutrals. Therlattegood
assumptions for a weakly-ionized gas. Indeed, should thigation fraction be less thard—, it can be shown that the force
due to collisions between charged species would amounss$afean 1% of the force induced by ion-neutral or electramvaé
collisions, and that the force resulting from the sheaissee would typically amount to an even smaller quantity.

Itis noted that the terms including the pressure gradieetssiained. Indeed, it can be shown that the change in mamment
due to the ion and electron pressure gradients is not alwegiggible for weakly-ionized gases. For instance, not atdythe
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charged species pressure gradients become substanhial thieé cathode sheaths, but the pressure gradients cabealsb
importance in the vicinity of shockwaves and in regions Wathr gas density.

Nonetheless, it can be shown that the forces due to presadiegts are unlikely to exceed significantly the electrgnedic
forces for typical flowfields. Then, taking this into congiglon, a simple derivation shows that the change in inerftide
electrons can be assumed negligible as long as the followstgctions are met:

T, < 60,000 K (3

and . v
—VP| €« — e 4
‘ Pe /’Le\/ mekBTe ( )

with T, the electron temperatures,, the mass of the electron, akd the Boltzmann constant. The restriction on the electron
temperature is easily satisfied in most weakly-ionizedairfbroblems. Indeed, even under very high electromagnetutsi
the electron temperature rarely exceeds 30,000 K. As fordhgiction on the gradient of the electron pressure gradie
would become invalid only if the electron pressure variesiptly over a distance of less than one micrometer (in sedl-le
air). This is unlikely to occur due to the strong electroridifon effectively prohibiting any such sudden change edlectron

properties.
Further, it can be proven that the change in inertia of the icam be assumed negligible compared to the ion pressure
gradient as long as
. 1
|E'| kg T? 2
— _—— 5
N < Tre Nt (1) ©
Alternately, the change in ion inertia can be assumed nibtgigompared to the electric field force if the following isi¢
N, — N, € P
| @ -
N mi(ﬂi)refNref Pref

with E' the electric field in the ion frame of referenc¥, the number density of the bulk of the plasma,the mass of the
ion, ¢, the permittivity of free spacep the pressure of the bulk of the gas, dpgl)..; the ion mobility evaluated at a reference
temperaturdl;, at a reference pressuR; and at a reference number densMy;. Because both the pressure gradient and
electric field terms are kept in the momentum equation, onb/af the above two conditions needs to be met for the ionimert
to be considered negligible. Then, from Eqgs. (5) and (6)ait be easily deduced that for air plasmas at a pressure garyin
between 0.01 and 1 atm, the change in inertia of the ibmuld become of importance only when three conditions anado
conjunctly: (i) the reduced electric field is in the order6f'° V m? or more, and (ii) the plasma has significant non-neutrality,
and (iii) the ionization fraction is more tha®=°—10~*. Except perhaps in the cathode sheath, such is unlikelydordor
weakly-ionized airflow.

Thus, after assuming that the inertia change is negligibtethat the momentum loss or gain through collisions between
charged species is negligible, the momentum equation besom

Mk
|Cic| Nk

VE=V"+ s (E+ VEx B) — VP, (7

wheres; is the sign of the charge of the species under consideratidor(electrons, +1 for positive ions, -1 for negative ians)
Then, after regrouping aW* — V" terms on the LHS the momentum equation in vector form becomes

Kk

Vk—Vn—Sk,LLk(Vk—Vn)XB:Sk,LLk(E—‘rVnXB)— VPk (8)
|C| Ni
The latter can be readily recast in matrix form as:
1 =Sk B3 sk Ba (VE-V"), (E+ V"x B), [ 0Py /0x,
Sk i B3 1 =i i By (VE=V", |=scpn | (E+V'xB), | — ICoN 0P /0x, 9
—Skx By Sk By 1 (VE=V"); (E+V"x B); e 0P /0x;
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Then, by defining the tensor mobilify* as:

-1

1 —ScpeBs s Bs
B = | sepnBs 1 =S i By
=Sk By sk By 1 (10)
" i 1+ u:zB? u; BB, +2sk£1,kB3 u§B1B3 — S pux Bs
= W “fBle — S i Bs . 1+ p;B; ;B> B; —|—2skéLkBl
uiB1Bs + sk By i BoBs — si i By 1 + uz B3

and multiplying all terms in the momentum equation by thestermobility and then dividing through my the scalar mo#ilit
we obtain the charged species momentum equation in tensor fo

~ iJ aP»
VE=Vi4 ) iy (B+ VI x B); = ) i o
J J
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Itis emphasized that the latter is derived from the invioidh of the charged species momentum equation by makingtaly
assumptions: (i) the momentum exchange through collisigtis other charged species is much less than through awoibsi
with the neutrals, and (ii) the change in inertia is negligilrhe latter assumptions have been shown to be generéitiyfoa
weakly-ionized airflow problems.

2.2. Charged Species Mass Conservation

Including the chemical reaction rates, the mass conservatjuation for the charged species takes on the form:

whereW; is the chemical reaction source term for the species undeideration. Because the species velodity is here
defined as the sum of the drift and the diffusion velocity, th&ss conservation equation as outlined in Eq. (12) takes int
account diffusion.

Then, multiplying the mass conservation equation by thegshand taking the sum over all species results in:

Yo+ Y g

Itis noted that the RHS of the latter equation is zero sinceeta@harge can be created or destroyed by the chemical pesces
Then, the charged species mass conservation equation betbenconservation of charge equation:

ch ZZ a—(ckavk) =0 (14)

=W, (12)

N V) = Z Ci Wi (13)

3. Generalized Ohm’sLaw

By using the momentum and mass conservation equations, rgedeeive the generalized Ohm's law. Consider the current
densityJ defined as the net mass flux of charges:

J; =) CNVF (15)
k

where the species velocif* includes both drift velocity and diffusion velocity. Thearged species velocity at steady-state
can be obtained from the momentum equation for each spéaije$]1):

» k9P,
‘/;k:‘/;n—kzskuf}j(E—‘rVnXB)j_Z J k
J J

16
|Ci| Ny 0x; (16)
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It is recalled that the latter form of the momentum equatiesuanes that the plasma is weakly-ionized. That is, the terms
involving changes in inertia and collisions between chdrgarticles can be considered negligible compared to thraster
involving electromagnetic forces and collisions betweeaarged particle and a neutral. Then, after substitutieddtter in

the former, we obtain the so-called generalized Ohm’s law:

~ 0P
Ji =Y Y CANJI (B + V' x B, —ZZsk e, . +chNkv (17)
J k
Then, defining the conductivity as:

o= Z |Ci | N i
k

|Ck|Nk,LLk 1 +/¢L2B2 ,LLiBle-FSk,LLkBg, [LiB]B3—SkﬂkB2 (18)
Zl + 2|BP ur BB — sy i B 1+ p; B uz B>Bs + i By
K M/%»BIB3 + sk i B2 M;%»BzB3 — S i By 1+ MiBi
the generalized Ohm’s law simplifies to:
Ji=Y 5, (E+anB),,—ZZsku,,a £ +ZCkaV” (19)
J

Because of the presence of the last term on RHS, the lattebeapplied to non-neutral regions of the plasma such as the
plasma sheaths. For the special case of a quasi-neutralgl#se last term on the RHS can be dropped.

Itis emphasized that Eq. (19) includes the Hall effect arddh slip effect. The ion slip includes the separate coutigins
to the current from each kind of ion. For instance, for a plaswmmposed of ©, N, ™, the effect of the ion slip associated
with the G ion is taken into account as well as the ion slip effect asgediwith the Iy ion.

3.1. ChargeCarriersLimited to Electronsand One Kind of Positive lons

For a plasma composed of only electrons and one type of positis, the tensor conductivity Eq. (18) would become:

O{zE%-FOh 023132_0633 a2_§1_§3+a3.§2
o = o +o Olz.glgz + Ol3.§3 a2§§ + o Ol2.§2.§3 - WBEI (20)
1 2 ~ o~ =~ 5 D D D
(3(2B1B3 — (X3B2 C(2B2B3 + C(3B1 (¥2B§ + o

In the latter, the normalized magnetic field is definedis= B, /|B|, while the Hall parameter for the electrons and ions is
defined agl. = u.|B| andB; = w,;| B| respectively. The conductivity includes a contributioorfrthe ions and the electrons,
i.e.0 = |Ci|Niui + |Ce| Nepte, and the parametess, «,, andas; correspond to:

ar = 1+ B (21)
o = (Be— IBi)Z + BB + (/Beﬂi)z (22)
a; = Be—p (23)

In tensor form, the generalized Ohm’s law has the same fatioul as Eq. (19). However, in this case (i.e. for a plasma in
which current is carried only by one kind of positive ions dydelectrons), the generalized Ohm’s law can also be written
vector form. Indeed, for the conductivity outlined in EqOJ2it can be shown that, should the pressure gradients andeatral
terms be neglected, the generalized Ohm’s law outlined i E3) becomes exactly:

ﬂl /Be ﬂeﬂi

J=0(E+V"xB)+ —~JxB-JxB+
| B| |B| | B|>

(JxB)x B (24)

Since the ion mobility is much less than the electron maghiite can say that; « B.. Then the latter becomes the well-known
generalized Ohm'’s law for a quasi-neutral plasma (inclgdim slip but excluding the pressure gradients):
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Be BB
|B| |B|?

On the RHS, the first term gives the effect of the electric fitld second term is the Hall effect and the last term is thelipn
[14,19].

J=0(E+V"xB

(JxB)x B (25)

3.2. ChargeCarriersLimited to Electrons
The tensor conductivity [Eq. (18)] can be further simpliffedthe case of a plasma in which the current is only carriethiey
electrons (that is, neglecting the effect of ion slip):

ﬁ§§f+1 ﬁfﬁlﬁz—ﬂeﬁs ,3§§1§3+,3e§2
BB\B,+p.B:  p:Bi+1  pB.Bi-f.B (26)
B2B\B;-p.B, P:B.B,+p.B. BB +1

O—:1+IB2

e

where the normalized magnetic field vecBris defined asB/|B|, where the conductivity corresponds tdC,| Nt and
where the Hall parametg. is equal tou.|B|. In tensor form, the generalized Ohm'’s law can be written asation of the
tensor conductivity as in Eq. (19). However, when the temsoductivity is as described in Eq. (26) and when non-néatra
pressure gradient effects are neglected, the generalizads@aw outlined in Eq. (19) collapses exactly to:

Be
|B|

J=0(E+V"xB) - (27)

On the RHS, the first term gives the effect of the electric fiattd the second term is the Hall effect [14].

4. Electric Field Potential Equation

By substituting the current defined in Eq. (15) into the mamsservation equation previously outlined in Eq. (14), i ¢ee
shown that the divergence of the current density is equdlegmegative rate of change of the charge density:

0 0N,
> o :_;ck% (28)

Then, recall that under the assumption of negligible iaectiange, negligible shear stress, and negligible mometussn
through collisions between charged particles, we obtaameexpression for the currentin Eq. (19) which we referreaktthe
generalized Ohm'’s law:

J; = Zal, (E+V"xB), —ZZskﬁf‘,a - +ZCkaV” (29)

Substituting the latter in the former yields:

0 ~ . 0P
ZW(Z% (B+V"xB), =3 Y il g +ZCkaV) -G (30
i ! J
Let's now assume that a potential of the electric field exmish that:

99

E, =
J ax]

(31)
The existence of a potential for the electric field implieattthe curl of the electric field is zero. For the curl of thectlie
field to be zero, the magnetic field can not vary in time. Thia i®asonable assumption for weakly-ionized flowfields as
long as the external magnetic field does not vary in time. éddéhe induced magnetic field can be considered negligitle f
weakly-ionized plasmas because the latter exhibit a lownmatig Reynolds number.
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Then, substitutingZ; = —d¢/0dx; in the current conservation equation, the electric fiel&ptal equation is obtained:

INy
Zax, (Zm, (—— + (V" x ) ZZsk s a +ZCkaV) ch al (32)

We can simplify the latter by regrouping the terms that aredimectly a function of the potential in the source tesm

SO NCOIAUSTIES S5 ) LR 7B I DMLATES SOE - S

J

Then, the potential equation collapses to the following imsimpler expression:

Ya 2o () - )

It is emphasized that the latter includes the effect of neatrality, the effect of the ion and electron pressure gnatdi the
effect of mass diffusion, the Hall effect, as well as the &ffef ion slip for each type of ion. For instance, for a plasnadmof
electrons, ¥, O;, Of, etc,the current due to ion slip of each ion type is taken into coesition

4.1. Recast of the Potential Equation in a Form Amenable to Discretization

Equation (34) seems to be a Poisson-like equation corgisfionly diffusion and source terms. It is well known thafd#ion

terms can be successfully discretized using central diffees without introducing spurious oscillations. Howeasrwill be

shown in this section, the potential equation outlined in B4¢) is not strictly a Poisson equation because some ofrtmes<
diffusion terms can be rewritten as convection derivativelen, contrarily to the Poisson equation, the potentiab&qn

cannot be discretized by only using central differencestdube presence of convection terms. It is hence importatitigt
stage to rewrite some of the diffusion terms as convectioivakd/es in order to obtain an expression for the potemtiplation
that is amenable to discretization.

For this matter, let’s rewrite the tensorial conductivigyaasum of a symmetric matrix and a skew-symmetric matrix:

G =064+0 (35)
with the symmetric matrix equal to:

ColNept 1+ MiBlz ,UviBle ,UviBlB3
Z - fﬂ | Bk|z BB, 1+ B} 11iB,B; (36)
w:B/Bs 2B,B; 1+ B2

and the skew-symmetric matrix equal to:

0 Sk Bz =S B
Z CulNuwe | B 0 s B 37)
1+ 2| BP Ui B3 Mk B
Sk,U«sz —SkMkBl 0

Then, after substituting the latter in the electric fieldgrdial equation, the following is obtained:
~s 09 ~ss 0
_ S SS S 38
Z 0x; - % ax Z 0x; - % 8x (38)
It can be easily shown that the term function of the skew-sgtnimconductivity tensor can be rewritten to:

3 ~ 3(;5 825'155 _ 32¢
Z i & vy ZZ ox; ( ) _"522 axox Z a % o (39)
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The last two terms on the RHS will always be zero due to the cotativity of differentiation and due to the mati@¢® being
skew-symmetric and having diagonal elements equal to Zéren, the electric field potential equation collapses to:

5 3(;5 loped
—Zax Bt v ZZax( )—S (40)

By substituting the and j indices of the term function of the skew-symmetric conddtiand defining the wave speed
associated with the skew-symmetric terms as

""SS

(41)

the potential equation becomes:
¢
a’> = 42
Zax 9= Zax r ”ax 8 (42)

Rather interestingly, the skew-symmetric diffusion tecas be seen to collapse to a convection-like derivativey thie wave
speed being proportional to the gradient of the condugtiWithen written in this form, the electric field potential egjon is
hence seen not to be strictly a diffusion equation. Rathénciudes a first order derivative additionally to the sett@nder
derivative.

It is noted that the first order derivative does not alwaysdifappreciably the solution. Indeed, the first-order deirre
becomes significant only in tleémultaneougresence of a high Hall parameter and a high gradient of gutredal conductivity.
While not necessarily a common occurrence in weakly-iahfimvfields, such a high Hall parameter combined with a strong
conductivity gradient has been observed in Faraday gemsrand accelerators using e-beam-ionized airflow as thkimgpr
fluid (see Ref. [11] for instance).

5. Discretization of the Potential Equation

Having expressed the potential equation in a form amenaklistretization by rewriting the skew-symmetric diffusideriva-
tives as convection derivatives, we can now proceed tostxiization. In discrete form, the potential equatiodinet in Eq.

(42) can be expressed as:
Z%?s Z%Z 5585, 6) = Sa (43)

Because central differences cannot be used to discretizeweection derivative without introducing even-odd disgling of
the properties, it is necessary to use an upwinded stendiktwetize the first derivative to prevent spurious ostidfes from
forming. Therefore, in conservative form on a uniformhaspd mesh, the discretization stencil of the skew-symmttrms
is set to:

.« X (aissd))Xi‘F% _ (aissqs)Xi_%
[Sxi (ai d))] - Axi

whereAx; refers to the grid spacing (which is here assumed constaairfiplicity) and whereX; refers to the grid index. For
instance, the notatiofiX, = 10, X, = 5) refers to the nodél0, 5). The flux at the interface is discretized using an upwinded
stencil combined with a symmetric minmod TVD limiter [20]:

(44)

Xi+1 x; 1, o X,-+1_l

SS

Xl+7 A¢X +2 + 1| ss
2

Xit3 mmmod(Aq&X ~3 A@¥itE, A¢X+2)

(45)
with Ag¥it32 = ¢Xit! — ¢Xi and where the minmod function returns the minimum of its argnts if the arguments are
all positive, the maximum if the arguments are all negatarg] zero if the arguments are of mixed signs. Such a stencil is
monotonicity-preserving while being second-order aceuiraregions where the properties vary smoothly. The otifersibn
terms can be discretized with centered stencils as they tijpase any problem:

1
(@) " = 5 (a9)

_(@8,9)" " - G8,9)
[ Xi ( 8‘7/ ¢):| Ax,» (46)
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where the flux at the interface would correspond to, when; :

_ Xi+l _ Xi+l ¢X,-+l _¢X,-
(@58u0)" " = @) 47)
and to, when # j:
1 1w X;. X, +1 X;+LXj4+1 _ X, X;—1 _ 3 X;+1.X;—1
(5l-s}5Xj¢)Xl+2 _ (El_si)XﬁZ,X, o XXt L g J — QXiXi ) j 48)
: : X,

6. Pseudotime Relaxation of the Discrete Potential Equation

The solution of the potential equation can be accomplisKeriently through an implicit pseudotime relaxation algbm. The
algorithm consists of adding a pseudotime derivative tgthtential equation, and rewriting the latter in delta form:

A” ~S n n
A—f’ + Zé’xi A" ((a?s¢) - Z (al._/.é’qub)) —A"S =—R} (49)

J

with A”() = ("' — ()", and where the superscript™ denotes the pseudotime level. As wel\t corresponds to the
pseudotime step. In the latter, the discrete residual sporeds to:

Ry =D 8 ((a?%)" -2 8x,¢>") -3 (50)

J

Because solving the delta form exactly would require exeesomputing effort in 2D or 3D, it is here preferred to sotie
delta form approximately through an approximate factaidraalgorithm [21]. Assuming that the tensor conductivity and
the source tern remain frozen during the integration in pseudotime frometilevelr to time leveln + 1, the equation to
solve at each node for thiéh sweep can be shown to correspond to:

E_Xi_% (ags)X,‘—l + |a$S|Xi_% 1 O Ia'SSI Xi—% G |a§s| Xi+%
_ ii + i i Ad)i)(,-fl + + ii + i + ii + i Aq&[)(l
Ax? 2AX; AtXi Ax?  Ax; Ax?  Ax;

=Xitd s ;41 SS|X;+4
— (CTX i~ (a?®) 2A+ |a?®| ) Ag} T = RHS
X; Xi

(51)

For the firsti-sweep (i.e., the sweep along the first dimension), the RH®tiso the negative of the discrete residual at the
previous pseudotime level. That is,
RHS= —(R%)* for the first sweep (52)

For the subsequent sweeps, the RHS is set to the potentiahieat obtained at the previous sweep divided by the psienelot
step. That s,

Xi
RHs= 201
ATX

X, for the second and third sweep (53)
After the sweeps along all dimensions are completed, thengiat increment obtained in the lassweep is used to find the
potential at the next pseudotime levgl't! = ¢ + A¢,.

Because the success of approximate factorization relighedegree of invariance of the linearization coefficieitts
preferred not to include a linearized form of the minmod tenion the LHS. Not only would this result in additional work t
solve a pentadiagonal matrix instead of a tridiagonal onethis would also induce erratic patterns in the convergdmistory
sometimes even preventing a converged solution altogether

The convergence rate of the approximate factorizationrdkgo can be further improved by not fixing the pseudotime ste
to the same value for all nodes. Rather, it is found (througiakand-error approach) that convergence can be reacioed
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rapidly by allowing the pseudotime step to vary at each nederling to the following relationship:

d Ax;
At = £ xmin po. IX‘ P
i=1 max(aﬁl , a i = )

ii 0 MYii

(54)

where¢ is a user-defined parameter which is sed @/ m for all cases shown herein. The rate of convergence canrthesfu
improved by varying the pseudotime step cyclically. Fotanse, for iteratiom, n + 1, n + 2, etc,£ is set t00.02 m, 0.08 m,
0.32m, 0.02 m, 0.08 m, etc. Although not used to solve the test cases shown hereh a cyclic variation of the pseudotime
step can be particularly beneficial when solving problentk Vairge variations of the magnetic field or of the grid spgcin

(a) Test Case 1:

1
0.75}
E 05L0 = oc=1S/m o= .
= 1074 S/m 107*S/m
0.25}
% 0.25 0.5 0.75 1
(b) Test Case 2:
! I I 5 =
Q A@ ;i:—(;)jx))(x
075 DB (@ Jas
D&)6)C
£ osf @7 @
) Ded) 636
Toms Ss/m @2@ To S/m
D) (6369 63)C
% o.? ﬁ@ — F/:.75 1

FIGURE 1: Contour levels of the scalar conductivity
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7. Test Cases

While the electric field potential equation and its disaation stencil outlined herein are written in general formd @an be
applied to plasmas in which both electrons and ions can @amment, the test cases here presented are limited for éase o
reproducibility to a plasma in which the current is carrietely by the electrons. Also for ease of reproducibilitye ource
termS is set to zero (thatis, the terms related to pressure gresdaed non-neutral effects are set to zero). Then, the syritmet
conductivity matrix simplifies to:

1+82B> B2B,B, p*B/B;
B2B\B, 1+ p2B2 pB2B,B; (55)
ﬂ?-/B\l-/B\3 ,3e2§2§3 1 +,3§§§

g
N
1+ 82

and the skew-symmetric matrix becomes:

0 _,Be-/B\?; ,Be-/B\2
~ o ~ ~
0% — 1+ﬁ2 ﬂeBB 0 _IBeBl (56)
‘ _,Be-/B\2 ,Be-/B\l 0

From the latter, it is apparent that the skew symmetric tearasnegligible when the Hall parameter is much less thary.unit
Additionally, as was shown previously, the skew symmetiots collapse to zero when there is no gradient of the coivityct
Therefore, in order to test adequately the proposed digatietn scheme, the Hall parameter and the conductivitgligrd are
here set sufficiently high that the skew-symmetric termslpnginate over the symmetric terms.

Two test cases are here considered. Both consist of a twerdiimnal domain with the following Dirichlet boundary
conditions:

Prm0 =20V, ¢pc1m =20V, ¢p—o =10V, ¢,_1n =40V (57)

with the Hall parameter fixed to 20, and the bulk gas velocitgdito zero. For test case 1, the conductivity is such that it
exhibits a strong gradient in some regions of the domaingbtlee monotonicity-preserving capabilities of the disizegion

10

10l 1537 x 1537 grld
[ ———— 385 x 385 grid

19l ,,,,,,,,, 97 x 97 grid

average residual, A/in
[
3

0 1000 2000 3000 2000
iteration count

FIGURE 2: Average residual error as a function of the iteration ¢donthe second test case using the proposed upwinded scheme
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(a) Standard 9-point central-difference stencil

0.75
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i
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15
0O 0.25 0.5 0.75 1
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(b) Proposed 13-point upwinded stencil
1
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~

0.25

0 0.25 0.5 0.75 1
X, m

FIGURE 3: Potential contours (in volts) for the first test case usifg x 97 grid.

scheme (see Fig. 1a):

1.0S/m for0.25m<x <0.75m
(58)

0.0001 S/m otherwise

For test case 2, the conductivity is given a variation in tbetal portion of the domain to test the order of accuracyhef t
scheme in smoothly-varying regions (see Fig. 1b):

1.0 + 0.4 x sin(9x) x cog97y) S/m for0.25m<x <0.75m
0.0001 S/m otherwise

(59)

12
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(a) Standard 9-point central-difference stencil

0.75f

- 0.5
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0.25}¢
0 1 L
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x,m
(b) Proposed 13-point upwinded stencil
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FIGURE 4: Potential contours (in volts) for the second test caseguad7 x 97 grid.

Even thus the gradient of the conductivity is high and thd platameter is high, spurious oscillations may still notwcc
Indeed, the skew-symmetric terms may become negligibleddain orientations of the magnetic field vector. It can agilg
shown that this would occur when the magnetic field vecta Wigthin the plane made by the potential gradient vector and
the conductivity gradient vector. For this reason and bgedlis desired to test the monotonicity-preserving cdjploif the
proposed scheme under the most stringent conditions, timeafiaed magnetic field vector is here fixed perpendiculah&
computational domain:

B=(001 (60)

It is noted that the magnitude of the magnetic field is not igec Indeed, it is not necessary to specify the magnitudaef
magnetic field because it does not appear explicitly in timpbfied potential equation used in this section. Ratherpibtential
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FIGURE5: Grid convergence study of the electric field for the sedmstlcase using the proposed upwinded scheme.

equation is written in terms of the Hall parameter.

For all cases here presented, the solution is obtaineddhrthe use of pseudotime relaxation. That is, the solution is
advanced in pseudotime through the use of an implicit apprate factorization algorithm until convergence is attainThe
solution is considered converged when the discrete relseuall nodes falls below a threshold set1t@. This is verified
to be sufficiently small to yield potential contours that arsually indistinguishable from those obtained using ddhesl
convergence threshold set to machine tolerance (abwu). The variation of the average residual as a function of the
iteration count is shown for the second test case in Fig. 2 agproximate factorization scheme is seen to yield a reddpn
fast convergence rate, with a converged solution beingrddan less than 300 iterations for the coarsest mesh. Th#au
of iterations necessary to reach convergence can be olgervary inversely proportionally with the grid spacing.ig s as
anticipated because the pseudotime step [as defined psévinlEq. (54)] is proportional to the mesh spacing and thewam

14
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of pseudotime necessary to reach convergence is more dntkgsendent of the mesh size.

A comparison between the potential contours obtained Wwittstandard 9-point central-difference stencil and thp@sed
13-point upwinded stencil is performed for the first tesiec@ee Fig. 3). As expected, the use of the standard ceiiffieriethice
stencil is seen to introduce severe spurious oscillatidrikeelectric field potential in the regions where the gratie the
conductivity is high. Such aphysical oscillations of theguial are completely removed when the upwinded stenoisésl. A
similar conclusion can be reached for the second test casttoavn in Fig. 4, the central-difference stencil introdusgurious
oscillations in the regions where a discontinuity of thedwxctivity is present while the upwinded stencil yields ausioin that
is monotonic throughout. In the regions where the conditgt#aries smoothly, the proposed upwinded stencil yieloteptial
contours that are almost identical to those obtained witsétond-order accurate central difference scheme. Bettzimesh
is rather coarse and the solution is not grid-independhbist,i$ a good indication that the upwinded stencil has anroofle
accuracy similar to the central-difference stencil ati@athin regions where the conductivity varies smoothly.

The second-order accuracy of the proposed scheme is codfihmaigh a grid convergence study. In Fig. 5, both compo-
nents of the electric field are plotted for 3 different meskels: 97 x 97, and193 x 193, and1537 x 1537 nodes. The electric
field obtained using the finest mesh can be considered to besamtéally exact solution. Indeed, it is ensured that frth
refining the mesh would not yield a discernible change in thetec field profiles. Then, assuming that the solution am th
finest mesh is exact, it is possible to estimate the orderafracy of the discretization stencil through Richardsdnegolation

of the electric field: B e A
d icoarse — ;exac xlfzoarse
sl () o (55
wherep is the order of accuracy of the scheme. With the help of therlaguation, and by gathering the solution error on the
coarse and fine meshes from Figure 5, the order of accurabgahéthod can be estimated. Throughout most of the domain,
the order of accuracy of the upwinded scheme can be seenjtbetween 1.8 and 1.9. However, close to the discontinuity of
the conductivity, the order of accuracy drops to about 1HIs 15 not surprising, because the proposed method utéiZeg¢D

scheme to ensure monotonicity, and TVD schemes are well knowe first-order accurate nearby discontinuities whiiedpe
second-order accurate in regions where the propertiessvaopthly.

8. Conclusions

A variant of the generalized Ohm'’s law that is applicable toudticomponent weakly-ionized plasma in a magnetic fieltkise
derived. The proposed formulation takes into considendtie separatecontributions to the ion slip current originating from
the different types of ions. It is shown that the latter canlégved from the charged species momentum and mass cotiserva
equations by making only 3 assumptions. Namely, when coedpi@r the electric field force and the pressure gradient force
acting on a charged species, the terms related to momenffusiain, the terms involving collisions between chargeecsgs,

and the terms related to the change in inertia are assuméidibky It is argued that the latter assumptions are vaditbag as

the gas remains weakly-ionized (that is, the ionizationtfcan should remain below0— or so).

Starting from the multicomponent form of the generalizedr@hlaw, an equation for the electric field potential is then
determined, that is applicable to a non-neutral plasma muithiiple types of ions in the presence of a magnetic field.pdes
some similarities between the potential equation and thesBo equation, it is argued that the discretization of thieiptial
equation cannot be accomplished in the same manner (by osiggcentral differences). Indeed, the discretizationhaf t
potential equation is demonstrated to require the use ofngea stencils in order to yield a solution free of spuriossib
lations. The use of upwinded stencils is seen to be necesgday the skew-symmetric terms part of the tensor condagtivi
matrix predominate over the other terms. This is shown tdbetase when three conditions are foeodjunctly (i) the Hall
parameter is high, (ii) the conductivity exhibits a sigrafit spatial gradient, and (iii) the magnetic field vectordasmponent
perpendicular to both the potential gradient vector anattreluctivity gradient vector.

A new discretization stencil for the potential equation é&éproposed, spanning 13 grid points in 2D and 33 grid points
in 3D. The stencil consists of a minmod TVD upwinded scheméhe skew-symmetric terms and a central difference stencil
for the other terms. The stencil is monotonicity-presegand, in regions where the properties vary smoothly, reasbeond-
order accuracy. The performance of the proposed upwindédadeompared to the standard central-difference scheme is
evaluated through several test cases. In all cases, imngjutbse with the most stringent conditions, the use of ugimn
results in a complete removal of the aphysical oscillations

Even though upwind differences are only necessary at a hghgdrameter, they are recommended for all flowfields
irrespectively of the value of the average Hall parametedeéd, even if the Hall parameter remains low on averagenit ¢
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attain values well exceeding unity in some flow regions dugoide heating or some other phenomenon decreasing lohelly t
gas density (on which the Hall parameter inversely depends)
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