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Generalized Ohm’s Law and Potential Equation in
Computational Weakly-Ionized Plasmadynamics

Bernard Parent�, Mikhail N. Shneider�, and Sergey O. Macheret�

A variant of the generalized Ohm’s law that is suited for a weakly-ionized multicomponent
plasma in a magnetic field is here derived. The latter takes into consideration the current due to
the non-neutrality of the plasma, the current due to the Halleffect, and the currents due to the
ion slip associated with each type of ion. An equation for theelectric field potential applicable
to a non-neutral multicomponent plasma in the presence of a magnetic field is then presented.
Despite some similarities between the potential equation and the Poisson equation, it is argued
that the discretization of the potential equation cannot beaccomplished in the same manner by
using only central differences. It is here proven (and subsequently verified through a test case)
that when the plasma exhibits conjunctly a high Hall parameter and a high electrical conductivity
gradient, the centered stencils introduce spurious oscillations which can lead to severe numerical
error. A novel discretization of the potential equation consisting of a blend of central and upwind
differences is then presented. The proposed scheme is consistently monotonic for any value of
the Hall parameter and is second-order accurate except in the vicinity of discontinuities.

1. Introduction

S EVERAL applications of weakly-ionized plasma technologies for improving the performance of aircraft have recently
been the subject of considerable interest. One possible application is aerodynamic flow control through virtual bodies

created by heat deposition using electron beams or another type of external ionizer [1, 2]. Other applications are centered on the
force exerted on the airflow due to magnetohydrodynamic interaction (MHD) or electrohydrodynamic interaction (EHD). The
EHD interaction (orion wind) is suspected to be one of the mechanisms responsible for thehigh success of plasma actuators
in preventing or delaying boundary layer separation [3], inenhancing jet mixing [4], in keeping the flow attached on turbine
blades [5], or in controlling the vortices above a delta wing[6]. On the other hand, the MHD interaction could be useful in
controlling the inlet flowfield [7, 8], in suppressing boundary-layer separation [9], in imparting momentum to a gas [10,11], or
in generating electrical power aboard a flight vehicle through a MHD generator [12, 13].

Despite some success using the weakly-ionized plasma technologies, there remain several key physical phenomena that are
still not well understood. For instance, it is not clear whether plasma actuators achieve flow control through the EHD interaction
or through heating, or how much of the Joule heating losses observed in a MHD generator occur within the plasma sheath. To
obtain a better understanding of the physical phenomena, itis desirable to obtain more detailed computational results.

A computational study of plasmas generally requires the coupled solution of the Navier-Stokes equations to obtain the bulk
flow properties and of the Maxwell equations to obtain the electric and magnetic field distributions. However, when a plasma
is weakly-ionized (that is, when the fraction of the gas molecules that are ionized are in the range10�8 to 10�4) and when
the applied magnetic field does not vary in time, it can be shown that the sole solution of the electric field potential provides
a reasonable approximation to the electromagnetic fields. The potential equation is derived from the so-called “generalized
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Ohm’s law” which provides an algebraic expression linking the current density to the electric and magnetic fields [14]:

J D �.E C V � B/ � ˇe

jBjJ � B

™

Hall current

C ˇeˇi

jBj2
.J � B/ � B

œ

current due to ion slip

(1)

with � the conductivity and witȟ i andˇe the Hall parameter for the ions and the electrons, respectively. The latter form of
the generalized Ohm’s law (or a variant including the effectof the electron pressure gradient) is the backbone of the recent
numerical methods solving weakly-ionized flowfields. However, while Eq. (1) takes into account the Hall effect as well as
the ion slip effect, it suffers from the limitation of being applicable to a plasma in which only one type of positive ion exists
alongside the electrons. This can be problematic when used in conjunction with fluid flow solvers that include 3 or more charged
species. Several attempts have been made to overcome this shortcoming (see for instance Ref. [15, p. 361] and more recently
Refs. [16, 17]). However, the latter fell short of yielding aclosed-form expression for the current that is specificallytailored to
a weakly-ionized gas and that can be readily implemented in aCFD code.

The first part of this paper hence consists of presenting a derivation of a variant of the generalized Ohm’s law that is
specifically suited to a weakly-ionized multicomponent plasma. The form of the generalized Ohm’s law presented herein takes
into consideration the Hall current as well as the separate ion slip currents associated with each type of ion. The second
part of this paper presents a novel discretization of the electric field potential. The discretization of the potential equation
has so far been accomplished through second-order accuratecentered stencils (see Refs. [13, 18] for instance). This has
proven to be a successful strategy. Indeed, the potential equation can be written as a diffusion equation, and the diffusion
derivatives can generally be discretized successfully using centered stencils. But, as will be proven subsequently inthis paper,
this discretization approach fails when the plasma exhibits conjunctly a high Hall parameter and a high electrical conductivity
gradient. In the plasma regions with such characteristics,the centered stencils introduce spurious oscillations which can lead to
severe numerical error. As a remedy for this problem, a new discretization stencil for the potential equation is here proposed.
The proposed scheme is consistently monotonic for any valueof the Hall parameter and is second-order accurate except inthe
vicinity of discontinuities.

2. Plasma Conservation Equations

Despite its name, the generalized Ohm’s “law” is not strictly a law because it can be derived from more basic physical principles.
These more basic physical principles are the principle of conservation of mass and the principle of conservation of momentum
applied to each charged species. In this section, a short outline of the momentum and mass conservation equations of the plasma
species is given, along with simplified forms applicable to aweakly-ionized plasma.

2.1. Charged Species Momentum Conservation

Denoting a particular species with the subscript/superscript k, the inviscid form of the momentum equation can be written as:

mkNk

@V k

@t
C mkNkV

k � rV
k D CkNk.E C V

k � B/ � jCkjNk

�k

�
V

k � V
n
�

� rPk (2)

with mk the mass of the ion or electron,Ck is the charge of the ion or electron under consideration (equal to�e for the electrons,
Ce for the singly-charged positive ions,�e for the singly-charged negative ions,�2e for the doubly-charged negative ions,
etc.),V k the species velocity (including drift and diffusion),V

n the velocity of the neutrals,�k the species mobility,Nk the
species number density,rPk the pressure gradient vector of the species under consideration,E the electric field vector, andB
the magnetic field vector.

In the latter, the forces originating from the shear stresses and from the collisions between charged species are assumed to
be negligible compared to the forces originating from the collisions of the charged species with the neutrals. The latter are good
assumptions for a weakly-ionized gas. Indeed, should the ionization fraction be less than10�4, it can be shown that the force
due to collisions between charged species would amount to less than 1% of the force induced by ion-neutral or electron-neutral
collisions, and that the force resulting from the shear stresses would typically amount to an even smaller quantity.

It is noted that the terms including the pressure gradients are retained. Indeed, it can be shown that the change in momentum
due to the ion and electron pressure gradients is not always negligible for weakly-ionized gases. For instance, not onlydo the
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charged species pressure gradients become substantial within the cathode sheaths, but the pressure gradients can alsobe of
importance in the vicinity of shockwaves and in regions withlow gas density.

Nonetheless, it can be shown that the forces due to pressure gradients are unlikely to exceed significantly the electromagnetic
forces for typical flowfields. Then, taking this into consideration, a simple derivation shows that the change in inertiaof the
electrons can be assumed negligible as long as the followingrestrictions are met:

Te < 60; 000 K (3)

and ˇ̌
ˇ̌ 1

Pe

rPe

ˇ̌
ˇ̌ � jCej

�e

p
mekBTe

(4)

with Te the electron temperature,me the mass of the electron, andkB the Boltzmann constant. The restriction on the electron
temperature is easily satisfied in most weakly-ionized airflow problems. Indeed, even under very high electromagnetic fields,
the electron temperature rarely exceeds 30,000 K. As for therestriction on the gradient of the electron pressure gradient, it
would become invalid only if the electron pressure varies abruptly over a distance of less than one micrometer (in sea-level
air). This is unlikely to occur due to the strong electron diffusion effectively prohibiting any such sudden change in the electron
properties.

Further, it can be proven that the change in inertia of the ions can be assumed negligible compared to the ion pressure
gradient as long as

jE ij
N

�
�

kBT 2

TrefN
2
refmi.�i/

2
ref

� 1
2

(5)

Alternately, the change in ion inertia can be assumed negligible compared to the electric field force if the following is true

jNi � Nej
N

� �0

mi.�i/
2
refNref

P

Pref

(6)

with E
i the electric field in the ion frame of reference,N the number density of the bulk of the plasma,mi the mass of the

ion, �0 the permittivity of free space,P the pressure of the bulk of the gas, and.�i/ref the ion mobility evaluated at a reference
temperatureTref, at a reference pressurePref and at a reference number densityNref. Because both the pressure gradient and
electric field terms are kept in the momentum equation, only one of the above two conditions needs to be met for the ion inertia
to be considered negligible. Then, from Eqs. (5) and (6), it can be easily deduced that for air plasmas at a pressure varying
between 0.01 and 1 atm, the change in inertia of the ion NC

2 would become of importance only when three conditions are found
conjunctly: (i) the reduced electric field is in the order of10�19 V m2 or more, and (ii) the plasma has significant non-neutrality,
and (iii) the ionization fraction is more than10�6–10�4. Except perhaps in the cathode sheath, such is unlikely to occur for
weakly-ionized airflow.

Thus, after assuming that the inertia change is negligible and that the momentum loss or gain through collisions between
charged species is negligible, the momentum equation becomes:

V
k D V

n C sk�k

�
E C V

k � B
�

� �k

jCkjNk

rPk (7)

wheresk is the sign of the charge of the species under consideration (-1 for electrons, +1 for positive ions, -1 for negative ions).
Then, after regrouping allV k � V

n terms on the LHS the momentum equation in vector form becomes:

V
k � V

n � sk�k.V k � V
n/ � B D sk�k .E C V

n � B/ � �k

jCkjNk

rPk (8)

The latter can be readily recast in matrix form as:

2
4

1 �sk�kB3 sk�kB2

sk�kB3 1 �sk�kB1

�sk�kB2 sk�kB1 1

3
5
2
4

.V k � V
n/1

.V k � V
n/2

.V k � V
n/3

3
5 D sk�k

2
4

.E C V
n � B/1

.E C V
n � B/2

.E C V
n � B/3

3
5 � �k

jCkjNk

2
4

@Pk=@x1

@Pk=@x2

@Pk=@x3

3
5 (9)
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Then, by defining the tensor mobilityz�k as:

z�k � �k

2
4

1 �sk�kB3 sk�kB2

sk�kB3 1 �sk�kB1

�sk�kB2 sk�kB1 1

3
5

�1

D �k

1 C �2
k jBj2

2
4

1 C �2

k
B

2

1
�2

k
B1B2 C sk�kB3 �2

k
B1B3 � sk�kB2

�2

k
B1B2 � sk�kB3 1 C �2

k
B

2

2
�2

k
B2B3 C sk�kB1

�2

k
B1B3 C sk�kB2 �2

k
B2B3 � sk�kB1 1 C �2

k
B

2

3

3
5

(10)

and multiplying all terms in the momentum equation by the tensor mobility and then dividing through my the scalar mobility,
we obtain the charged species momentum equation in tensor form:

V
k

i
D V

n
i

C
X

j

sk z�k

ij
.E C V

n � B/j �
X

j

z�k

ij

jCkjNk

@Pk

@xj

(11)

It is emphasized that the latter is derived from the inviscidform of the charged species momentum equation by making onlytwo
assumptions: (i) the momentum exchange through collisionswith other charged species is much less than through collisions
with the neutrals, and (ii) the change in inertia is negligible. The latter assumptions have been shown to be generally valid for
weakly-ionized airflow problems.

2.2. Charged Species Mass Conservation

Including the chemical reaction rates, the mass conservation equation for the charged species takes on the form:

@Nk

@t
C
X

i

@

@xi

.NkV
k

i
/ D Wk (12)

whereWk is the chemical reaction source term for the species under consideration. Because the species velocityV
k is here

defined as the sum of the drift and the diffusion velocity, themass conservation equation as outlined in Eq. (12) takes into
account diffusion.

Then, multiplying the mass conservation equation by the charge and taking the sum over all species results in:

X

k

Ck

@Nk

@t
C
X

k

X

i

@

@xi

.CkNkV
k

i
/ D

X

k

CkWk (13)

It is noted that the RHS of the latter equation is zero since nonet charge can be created or destroyed by the chemical processes.
Then, the charged species mass conservation equation becomes the conservation of charge equation:

X

k

Ck

@Nk

@t
C
X

k

X

i

@

@xi

.CkNkV
k

i
/ D 0 (14)

3. Generalized Ohm’s Law

By using the momentum and mass conservation equations, we here derive the generalized Ohm’s law. Consider the current
densityJ defined as the net mass flux of charges:

Ji �
X

k

CkNkV
k

i
(15)

where the species velocityV k includes both drift velocity and diffusion velocity. The charged species velocity at steady-state
can be obtained from the momentum equation for each species,Eq. (11):

V
k

i
D V

n
i

C
X

j

sk z�k

ij
.E C V

n � B/j �
X

j

z�k

ij

jCkjNk

@Pk

@xj

(16)
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It is recalled that the latter form of the momentum equation assumes that the plasma is weakly-ionized. That is, the terms
involving changes in inertia and collisions between charged particles can be considered negligible compared to the terms
involving electromagnetic forces and collisions between acharged particle and a neutral. Then, after substituting the latter in
the former, we obtain the so-called generalized Ohm’s law:

Ji D
X

j

X

k

jCkjNk z�k

ij
.E C V

n � B/j �
X

j

X

k

sk z�k

ij

@Pk

@xj

C
X

k

CkNkV
n

i (17)

Then, defining the conductivity as:

z� �
X

k

jCkjNk z�k

D
X

k

jCkjNk�k

1 C �2
k jBj2

2
4

1 C �2

k
B

2

1
�2

k
B1B2 C sk�kB3 �2

k
B1B3 � sk�kB2

�2

k
B1B2 � sk�kB3 1 C �2

k
B

2

2
�2

k
B2B3 C sk�kB1

�2

k
B1B3 C sk�kB2 �2

k
B2B3 � sk�kB1 1 C �2

k
B

2

3

3
5

(18)

the generalized Ohm’s law simplifies to:

Ji D
X

j

z�ij .E C V
n � B/j �

X

j

X

k

sk z�k

ij

@Pk

@xj

C
X

k

CkNkV
n

i (19)

Because of the presence of the last term on RHS, the latter canbe applied to non-neutral regions of the plasma such as the
plasma sheaths. For the special case of a quasi-neutral plasma, the last term on the RHS can be dropped.

It is emphasized that Eq. (19) includes the Hall effect and the ion slip effect. The ion slip includes the separate contributions
to the current from each kind of ion. For instance, for a plasma composed of O�2 , NC

2 , e�, the effect of the ion slip associated
with the O�

2 ion is taken into account as well as the ion slip effect associated with the NC

2 ion.

3.1. Charge Carriers Limited to Electrons and One Kind of Positive Ions

For a plasma composed of only electrons and one type of positive ions, the tensor conductivity Eq. (18) would become:

z� D �

˛1 C ˛2

2
664

˛2
bB2

1
C ˛1 ˛2

bB1
bB2 � ˛3

bB3 ˛2
bB1
bB3 C ˛3

bB2

˛2
bB1
bB2 C ˛3

bB3 ˛2
bB2

2
C ˛1 ˛2

bB2
bB3 � ˛3

bB1

˛2
bB1
bB3 � ˛3

bB2 ˛2
bB2
bB3 C ˛3

bB1 ˛2
bB2

3
C ˛1

3
775 (20)

In the latter, the normalized magnetic field is defined asbBi � Bi =jBj, while the Hall parameter for the electrons and ions is
defined aš e � �ejBj andˇi � �ijBj respectively. The conductivity includes a contribution from the ions and the electrons,
i.e.� D jCijNi�i C jCejNe�e, and the parameters̨1, ˛2, and˛3 correspond to:

˛1 D 1 C ˇeˇi (21)

˛2 D .ˇe � ˇi/
2 C ˇeˇi C .ˇeˇi/

2 (22)

˛3 D ˇe � ˇi (23)

In tensor form, the generalized Ohm’s law has the same formulation as Eq. (19). However, in this case (i.e. for a plasma in
which current is carried only by one kind of positive ions andby electrons), the generalized Ohm’s law can also be writtenin
vector form. Indeed, for the conductivity outlined in Eq. (20), it can be shown that, should the pressure gradients and non-neutral
terms be neglected, the generalized Ohm’s law outlined in Eq. (19) becomes exactly:

J D �.E C V
n � B/ C ˇi

jBjJ � B � ˇe

jBjJ � B C ˇeˇi

jBj2
.J � B/ � B (24)

Since the ion mobility is much less than the electron mobility, we can say thať i � ˇe. Then the latter becomes the well-known
generalized Ohm’s law for a quasi-neutral plasma (including ion slip but excluding the pressure gradients):
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J D �.E C V
n � B/ � ˇe

jBjJ � B C ˇeˇi

jBj2
.J � B/ � B (25)

On the RHS, the first term gives the effect of the electric field, the second term is the Hall effect and the last term is the ionslip
[14, 19].

3.2. Charge Carriers Limited to Electrons

The tensor conductivity [Eq. (18)] can be further simplifiedfor the case of a plasma in which the current is only carried bythe
electrons (that is, neglecting the effect of ion slip):

z� D �

1 C ˇ2
e

2
664

ˇ2

e
bB2

1
C 1 ˇ2

e
bB1
bB2 � ˇe

bB3 ˇ2

e
bB1
bB3 C ˇe

bB2

ˇ2

e
bB1
bB2 C ˇe

bB3 ˇ2

e
bB2

2
C 1 ˇ2

e
bB2
bB3 � ˇe

bB1

ˇ2

e
bB1
bB3 � ˇe

bB2 ˇ2

e
bB2
bB3 C ˇe

bB1 ˇ2

e
bB2

3
C 1

3
775 (26)

where the normalized magnetic field vectorbB is defined asB=jBj, where the conductivity� corresponds tojCejNe�e and
where the Hall parameteře is equal to�ejBj. In tensor form, the generalized Ohm’s law can be written as afunction of the
tensor conductivity as in Eq. (19). However, when the tensorconductivity is as described in Eq. (26) and when non-neutral and
pressure gradient effects are neglected, the generalized Ohm’s law outlined in Eq. (19) collapses exactly to:

J D �.E C V
n � B/ � ˇe

jBjJ � B (27)

On the RHS, the first term gives the effect of the electric field, and the second term is the Hall effect [14].

4. Electric Field Potential Equation

By substituting the current defined in Eq. (15) into the mass conservation equation previously outlined in Eq. (14), it can be
shown that the divergence of the current density is equal to the negative rate of change of the charge density:

X

i

@

@xi

Ji D �
X

k

Ck

@Nk

@t
(28)

Then, recall that under the assumption of negligible inertia change, negligible shear stress, and negligible momentumloss
through collisions between charged particles, we obtainedan expression for the current in Eq. (19) which we referred toas the
generalized Ohm’s law:

Ji D
X

j

z�ij .E C V
n � B/j �

X

j

X

k

sk z�k

ij

@Pk

@xj

C
X

k

CkNkV
n

i
(29)

Substituting the latter in the former yields:

X

i

@

@xi

 X

j

z�ij .E C V
n � B/j �

X

j

X

k

sk z�k

ij

@Pk

@xj

C
X

k

CkNkV
n

i

!
D �

X

k

Ck

@Nk

@t
(30)

Let’s now assume that a potential of the electric field exists, such that:

Ej D � @�

@xj

(31)

The existence of a potential for the electric field implies that the curl of the electric field is zero. For the curl of the electric
field to be zero, the magnetic field can not vary in time. This isa reasonable assumption for weakly-ionized flowfields as
long as the external magnetic field does not vary in time. Indeed, the induced magnetic field can be considered negligible for
weakly-ionized plasmas because the latter exhibit a low magnetic Reynolds number.
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Then, substitutingEj D �@�=@xj in the current conservation equation, the electric field potential equation is obtained:

X

i

@

@xi

 X

j

z�ij

�
� @�

@xj

C .V n � B/j

�
�
X

j

X

k

sk z�k

ij

@Pk

@xj

C
X

k

CkNkV
n

i

!
D �

X

k

Ck

@Nk

@t
(32)

We can simplify the latter by regrouping the terms that are not directly a function of the potential in the source termS :

S D �
X

i

@

@xi

X

j

z�ij .V n � B/j C
X

i

@

@xi

X

j

X

k

sk z�k

ij

@Pk

@xj

�
X

i

@

@xi

X

k

CkNkV
n

i
�
X

k

Ck

@Nk

@t
(33)

Then, the potential equation collapses to the following much simpler expression:

X

i

@

@xi

X

j

z�ij

�
� @�

@xj

�
D S (34)

It is emphasized that the latter includes the effect of non-neutrality, the effect of the ion and electron pressure gradients, the
effect of mass diffusion, the Hall effect, as well as the effect of ion slip for each type of ion. For instance, for a plasma made of
electrons, NC2 , O�

2 , OC

2 , etc,the current due to ion slip of each ion type is taken into consideration.

4.1. Recast of the Potential Equation in a Form Amenable to Discretization

Equation (34) seems to be a Poisson-like equation consisting of only diffusion and source terms. It is well known that diffusion
terms can be successfully discretized using central differences without introducing spurious oscillations. However, as will be
shown in this section, the potential equation outlined in Eq. (34) is not strictly a Poisson equation because some of the cross-
diffusion terms can be rewritten as convection derivatives. Then, contrarily to the Poisson equation, the potential equation
cannot be discretized by only using central differences dueto the presence of convection terms. It is hence important atthis
stage to rewrite some of the diffusion terms as convection derivatives in order to obtain an expression for the potentialequation
that is amenable to discretization.

For this matter, let’s rewrite the tensorial conductivity as a sum of a symmetric matrix and a skew-symmetric matrix:

z� D z�S C z�SS (35)

with the symmetric matrix equal to:

z�S D
X

k

jCkjNk�k

1 C �2
kjBj2

2
64

1 C �2

k
B

2

1
�2

k
B1B2 �2

k
B1B3

�2

k
B1B2 1 C �2

k
B

2

2
�2

k
B2B3

�2

k
B1B3 �2

k
B2B3 1 C �2

k
B

2

3

3
75 (36)

and the skew-symmetric matrix equal to:

z�SS D
X

k

jCkjNk�k

1 C �2
k jBj2

2
64

0 sk�kB3 �sk�kB2

�sk�kB3 0 sk�kB1

sk�kB2 �sk�kB1 0

3
75 (37)

Then, after substituting the latter in the electric field potential equation, the following is obtained:

�
X

i

@

@xi

X

j

z�S
ij

@�

@xj

�
X

i

@

@xi

X

j

z�SS
ij

@�

@xj

D S (38)

It can be easily shown that the term function of the skew-symmetric conductivity tensor can be rewritten to:

X

i

@

@xi

X

j

z�SS
ij

@�

@xj

D
X

i

X

j

@

@xj

�
@z�SS

ij

@xi

�

�
� �

X

i

X

j

@2z�SS
ij

@xi @xj

C
X

i

X

j

z�SS
ij

@2�

@xj @xi

(39)
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The last two terms on the RHS will always be zero due to the commutativity of differentiation and due to the matrixz�SS being
skew-symmetric and having diagonal elements equal to zero.Then, the electric field potential equation collapses to:

�
X

i

@

@xi

X

j

z�S
ij

@�

@xj

�
X

i

X

j

@

@xj

�
@z�SS

ij

@xi

�

�
D S (40)

By substituting thei and j indices of the term function of the skew-symmetric conductivity and defining the wave speed
associated with the skew-symmetric terms as

aSS
i

� �
X

j

@z�SS
ji

@xj

(41)

the potential equation becomes:
X

i

@

@xi

aSS
i

� �
X

i

@

@xi

X

j

z�S
ij

@�

@xj

D S (42)

Rather interestingly, the skew-symmetric diffusion termscan be seen to collapse to a convection-like derivative, with the wave
speed being proportional to the gradient of the conductivity. When written in this form, the electric field potential equation is
hence seen not to be strictly a diffusion equation. Rather, it includes a first order derivative additionally to the second order
derivative.

It is noted that the first order derivative does not always affect appreciably the solution. Indeed, the first-order derivative
becomes significant only in thesimultaneouspresence of a high Hall parameter and a high gradient of the electrical conductivity.
While not necessarily a common occurrence in weakly-ionized flowfields, such a high Hall parameter combined with a strong
conductivity gradient has been observed in Faraday generators and accelerators using e-beam-ionized airflow as the working
fluid (see Ref. [11] for instance).

5. Discretization of the Potential Equation

Having expressed the potential equation in a form amenable to discretization by rewriting the skew-symmetric diffusion deriva-
tives as convection derivatives, we can now proceed to its discretization. In discrete form, the potential equation outlined in Eq.
(42) can be expressed as: X

i

ıxi

�
aSS

i
�
�

�
X

i

ıxi

X

j

�
z�S

ij
ıxj

�
�

D S� (43)

Because central differences cannot be used to discretize a convection derivative without introducing even-odd discoupling of
the properties, it is necessary to use an upwinded stencil todiscretize the first derivative to prevent spurious oscillations from
forming. Therefore, in conservative form on a uniformly-spaced mesh, the discretization stencil of the skew-symmetric terms
is set to:

�
ıxi

�
aSS

i
�
��Xi D

�
aSS

i
�
�Xi C 1

2 �
�
aSS

i
�
�Xi � 1

2

�xi

(44)

where�xi refers to the grid spacing (which is here assumed constant for simplicity) and whereXi refers to the grid index. For
instance, the notation.X1 D 10; X2 D 5/ refers to the node.10; 5/. The flux at the interface is discretized using an upwinded
stencil combined with a symmetric minmod TVD limiter [20]:

�
aSS

i
�
�Xi C 1

2 D 1

2

�
aSS

i
�
�Xi C 1

2

�
aSS

i
�
�Xi C1 � 1

2

ˇ̌
aSS

i

ˇ̌Xi C 1
2 ��Xi C 1

2 C 1

2

ˇ̌
aSS

i

ˇ̌Xi C 1
2 minmod

�
��Xi � 1

2 ; ��Xi C 1
2 ; ��Xi C 3

2

�

(45)
with ��Xi C 1

2 � �Xi C1 � �Xi and where the minmod function returns the minimum of its arguments if the arguments are
all positive, the maximum if the arguments are all negative,and zero if the arguments are of mixed signs. Such a stencil is
monotonicity-preserving while being second-order accurate in regions where the properties vary smoothly. The other diffusion
terms can be discretized with centered stencils as they do not pose any problem:

�
ıxi

�
z�S

ij
ıxj

�
��Xi D

�
z�S

ij
ıxj

�
�Xi C 1

2 �
�
z�S

ij
ıxj

�
�Xi � 1

2

�xi

(46)
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where the flux at the interface would correspond to, wheni D j :

�
z�S

ij
ıxj

�
�Xi C 1

2 D
�
z�S

ii

�Xi C 1
2

�Xi C1 � �Xi

�xi

(47)

and to, wheni ¤ j :

�
z�S

ij
ıxj

�
�Xi C 1

2 D
�
z�S

ij

�Xi C 1
2

;Xj � �Xi ;Xj C1 C �Xi C1;Xj C1 � �Xi ;Xj �1 � �Xi C1;Xj �1

4�xj

(48)

6. Pseudotime Relaxation of the Discrete Potential Equation

The solution of the potential equation can be accomplished efficiently through an implicit pseudotime relaxation algorithm. The
algorithm consists of adding a pseudotime derivative to thepotential equation, and rewriting the latter in delta form:

�n�

��
C
X

i

ıxi
�n

 
�
aSS

i
�
�

�
X

j

�
z�S

ij
ıxj

�
�
!

� �nS D �Rn

�
(49)

with �n./ � ./nC1 � ./n, and where the superscript “n” denotes the pseudotime level. As well,�� corresponds to the
pseudotime step. In the latter, the discrete residual corresponds to:

Rn

�
D
X

i

ıxi

 
�
aSS

i
�
�n �

X

j

�
z�S

ij
ıxj

�
�n

!
� Sn

�
(50)

Because solving the delta form exactly would require excessive computing effort in 2D or 3D, it is here preferred to solvethe
delta form approximately through an approximate factorization algorithm [21]. Assuming that the tensor conductivityz�ij and
the source termS remain frozen during the integration in pseudotime from time leveln to time leveln C 1, the equation to
solve at each node for thei th sweep can be shown to correspond to:

�
 

z�Xi � 1
2

ii

�x2
i

C .aSS
i

/Xi �1 C jaSS
i

jXi � 1
2

2�xi

!
��

Xi �1

i C
 

1

��Xi
C
� z�ii

�x2
i

C jaSS
i

j
�xi

�Xi � 1
2

C
� z�ii

�x2
i

C jaSS
i

j
�xi

�Xi C 1
2

!
��

Xi

i

�
 

z�Xi C 1
2

ii

�x2
i

C �.aSS
i

/Xi C1 C jaSS
i

jXi C 1
2

2�xi

!
��

Xi C1

i D RHS

(51)

For the firsti -sweep (i.e., the sweep along the first dimension), the RHS isset to the negative of the discrete residual at the
previous pseudotime level. That is,

RHSD �.Rn

�
/Xi for the first sweep: (52)

For the subsequent sweeps, the RHS is set to the potential increment obtained at the previous sweep divided by the pseudotime
step. That is,

RHSD ��
Xi

i�1

��Xi
for the second and third sweep: (53)

After the sweeps along all dimensions are completed, the potential increment obtained in the lasti -sweep is used to find the
potential at the next pseudotime level:�nC1 D �n C ��d .

Because the success of approximate factorization relies onthe degree of invariance of the linearization coefficients,it is
preferred not to include a linearized form of the minmod limiter on the LHS. Not only would this result in additional work to
solve a pentadiagonal matrix instead of a tridiagonal one, but this would also induce erratic patterns in the convergence history
sometimes even preventing a converged solution altogether.

The convergence rate of the approximate factorization algorithm can be further improved by not fixing the pseudotime step
to the same value for all nodes. Rather, it is found (through atrial-and-error approach) that convergence can be reachedmore
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rapidly by allowing the pseudotime step to vary at each node according to the following relationship:

�� D � �
d

min
iD1

0
@ �xi

max
�

z�Xi �1

ii ; z�Xi

ii ; z�Xi C1

ii

�

1
A (54)

where� is a user-defined parameter which is set to0:07 m for all cases shown herein. The rate of convergence can be further
improved by varying the pseudotime step cyclically. For instance, for iterationn, n C 1, n C 2, etc,� is set to0:02 m, 0:08 m,
0:32 m, 0:02 m, 0:08 m, etc. Although not used to solve the test cases shown herein, such a cyclic variation of the pseudotime
step can be particularly beneficial when solving problems with large variations of the magnetic field or of the grid spacing.

0 0.25 0.5 0.75 1
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FIGURE 1: Contour levels of the scalar conductivity� .
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7. Test Cases

While the electric field potential equation and its discretization stencil outlined herein are written in general form and can be
applied to plasmas in which both electrons and ions can carrycurrent, the test cases here presented are limited for ease of
reproducibility to a plasma in which the current is carried solely by the electrons. Also for ease of reproducibility, the source
termS is set to zero (that is, the terms related to pressure gradients and non-neutral effects are set to zero). Then, the symmetric
conductivity matrix simplifies to:

z�S ! �

1 C ˇ2
e

2
664

1 C ˇ2

e
bB2

1
ˇ2

e
bB1
bB2 ˇ2

e
bB1
bB3

ˇ2

e
bB1
bB2 1 C ˇ2

e
bB2

2
ˇ2

e
bB2
bB3

ˇ2

e
bB1
bB3 ˇ2

e
bB2
bB3 1 C ˇ2

e
bB2

3

3
775 (55)

and the skew-symmetric matrix becomes:

z�SS ! �

1 C ˇ2
e

2
664

0 �ˇe
bB3 ˇe

bB2

ˇe
bB3 0 �ˇe

bB1

�ˇe
bB2 ˇe

bB1 0

3
775 (56)

From the latter, it is apparent that the skew symmetric termsare negligible when the Hall parameter is much less than unity.
Additionally, as was shown previously, the skew symmetric terms collapse to zero when there is no gradient of the conductivity.
Therefore, in order to test adequately the proposed discretization scheme, the Hall parameter and the conductivity gradient are
here set sufficiently high that the skew-symmetric terms predominate over the symmetric terms.

Two test cases are here considered. Both consist of a two-dimensional domain with the following Dirichlet boundary
conditions:

�xD0 D 20 V; �xD1 m D 20 V; �yD0 D 10 V; �yD1 m D 40 V (57)

with the Hall parameter fixed to 20, and the bulk gas velocity fixed to zero. For test case 1, the conductivity is such that it
exhibits a strong gradient in some regions of the domain to test the monotonicity-preserving capabilities of the discretization
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FIGURE 2: Average residual error as a function of the iteration count for the second test case using the proposed upwinded scheme.
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FIGURE 3: Potential contours (in volts) for the first test case usinga97 � 97 grid.

scheme (see Fig. 1a):

� D
(

1:0 S=m for 0:25 m � x � 0:75 m

0:0001 S=m otherwise
(58)

For test case 2, the conductivity is given a variation in the central portion of the domain to test the order of accuracy of the
scheme in smoothly-varying regions (see Fig. 1b):

� D
(

1:0 C 0:4 � sin.9�x/ � cos.9�y/ S=m for 0:25 m � x � 0:75 m

0:0001 S=m otherwise
(59)
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FIGURE 4: Potential contours (in volts) for the second test case using a97 � 97 grid.

Even thus the gradient of the conductivity is high and the Hall parameter is high, spurious oscillations may still not occur.
Indeed, the skew-symmetric terms may become negligible forcertain orientations of the magnetic field vector. It can be easily
shown that this would occur when the magnetic field vector lies within the plane made by the potential gradient vector and
the conductivity gradient vector. For this reason and because it is desired to test the monotonicity-preserving capability of the
proposed scheme under the most stringent conditions, the normalized magnetic field vector is here fixed perpendicular tothe
computational domain:

bB D .0; 0; 1/ (60)

It is noted that the magnitude of the magnetic field is not specified. Indeed, it is not necessary to specify the magnitude ofthe
magnetic field because it does not appear explicitly in the simplified potential equation used in this section. Rather, the potential
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FIGURE 5: Grid convergence study of the electric field for the secondtest case using the proposed upwinded scheme.

equation is written in terms of the Hall parameter.
For all cases here presented, the solution is obtained through the use of pseudotime relaxation. That is, the solution is

advanced in pseudotime through the use of an implicit approximate factorization algorithm until convergence is attained. The
solution is considered converged when the discrete residual on all nodes falls below a threshold set to10�4. This is verified
to be sufficiently small to yield potential contours that arevisually indistinguishable from those obtained using a residual
convergence threshold set to machine tolerance (about10�13). The variation of the average residual as a function of the
iteration count is shown for the second test case in Fig. 2. The approximate factorization scheme is seen to yield a reasonably
fast convergence rate, with a converged solution being obtained in less than 300 iterations for the coarsest mesh. The number
of iterations necessary to reach convergence can be observed to vary inversely proportionally with the grid spacing. This is as
anticipated because the pseudotime step [as defined previously in Eq. (54)] is proportional to the mesh spacing and the amount
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of pseudotime necessary to reach convergence is more or lessindependent of the mesh size.
A comparison between the potential contours obtained with the standard 9-point central-difference stencil and the proposed

13-point upwinded stencil is performed for the first test case (see Fig. 3). As expected, the use of the standard central-difference
stencil is seen to introduce severe spurious oscillations of the electric field potential in the regions where the gradient of the
conductivity is high. Such aphysical oscillations of the potential are completely removed when the upwinded stencil isused. A
similar conclusion can be reached for the second test case: as shown in Fig. 4, the central-difference stencil introduces spurious
oscillations in the regions where a discontinuity of the conductivity is present while the upwinded stencil yields a solution that
is monotonic throughout. In the regions where the conductivity varies smoothly, the proposed upwinded stencil yields potential
contours that are almost identical to those obtained with the second-order accurate central difference scheme. Because the mesh
is rather coarse and the solution is not grid-independent, this is a good indication that the upwinded stencil has an order of
accuracy similar to the central-difference stencil at least within regions where the conductivity varies smoothly.

The second-order accuracy of the proposed scheme is confirmed through a grid convergence study. In Fig. 5, both compo-
nents of the electric field are plotted for 3 different mesh levels: 97 � 97, and193 � 193, and1537 � 1537 nodes. The electric
field obtained using the finest mesh can be considered to be an essentially exact solution. Indeed, it is ensured that further
refining the mesh would not yield a discernible change in the electric field profiles. Then, assuming that the solution on the
finest mesh is exact, it is possible to estimate the order of accuracy of the discretization stencil through Richardson extrapolation
of the electric field:

p � d
ave
iD1

�
ln

�
E

coarse
i

� E
exact
i

E
fine
i � E

exact
i

��
ln

�
�xcoarse

i

�xfine
i

��
(61)

wherep is the order of accuracy of the scheme. With the help of the latter equation, and by gathering the solution error on the
coarse and fine meshes from Figure 5, the order of accuracy of the method can be estimated. Throughout most of the domain,
the order of accuracy of the upwinded scheme can be seen to vary between 1.8 and 1.9. However, close to the discontinuity of
the conductivity, the order of accuracy drops to about 1.0. This is not surprising, because the proposed method utilizesa TVD
scheme to ensure monotonicity, and TVD schemes are well known to be first-order accurate nearby discontinuities while being
second-order accurate in regions where the properties varysmoothly.

8. Conclusions

A variant of the generalized Ohm’s law that is applicable to amulticomponent weakly-ionized plasma in a magnetic field ishere
derived. The proposed formulation takes into consideration theseparatecontributions to the ion slip current originating from
the different types of ions. It is shown that the latter can bederived from the charged species momentum and mass conservation
equations by making only 3 assumptions. Namely, when compared to the electric field force and the pressure gradient force
acting on a charged species, the terms related to momentum diffusion, the terms involving collisions between charged species,
and the terms related to the change in inertia are assumed negligible. It is argued that the latter assumptions are valid as long as
the gas remains weakly-ionized (that is, the ionization fraction should remain below10�4 or so).

Starting from the multicomponent form of the generalized Ohm’s law, an equation for the electric field potential is then
determined, that is applicable to a non-neutral plasma withmultiple types of ions in the presence of a magnetic field. Despite
some similarities between the potential equation and the Poisson equation, it is argued that the discretization of the potential
equation cannot be accomplished in the same manner (by usingonly central differences). Indeed, the discretization of the
potential equation is demonstrated to require the use of upwinded stencils in order to yield a solution free of spurious oscil-
lations. The use of upwinded stencils is seen to be necessarywhen the skew-symmetric terms part of the tensor conductivity
matrix predominate over the other terms. This is shown to be the case when three conditions are foundconjunctly: (i) the Hall
parameter is high, (ii) the conductivity exhibits a significant spatial gradient, and (iii) the magnetic field vector hasa component
perpendicular to both the potential gradient vector and theconductivity gradient vector.

A new discretization stencil for the potential equation is here proposed, spanning 13 grid points in 2D and 33 grid points
in 3D. The stencil consists of a minmod TVD upwinded scheme for the skew-symmetric terms and a central difference stencil
for the other terms. The stencil is monotonicity-preserving and, in regions where the properties vary smoothly, reaches second-
order accuracy. The performance of the proposed upwinded method compared to the standard central-difference scheme is
evaluated through several test cases. In all cases, including those with the most stringent conditions, the use of upwinding
results in a complete removal of the aphysical oscillations.

Even though upwind differences are only necessary at a high Hall parameter, they are recommended for all flowfields
irrespectively of the value of the average Hall parameter. Indeed, even if the Hall parameter remains low on average, it can
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attain values well exceeding unity in some flow regions due toJoule heating or some other phenomenon decreasing locally the
gas density (on which the Hall parameter inversely depends).
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