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Electron and Ion Transport Equations in
Computational Weakly-Ionized Plasmadynamics

Bernard Parent�, Sergey O. Macheret�, and Mikhail N. Shneider�

A new set of ion and electron transport equations is proposedto simulate steady or unsteady
quasi-neutral or non-neutral multicomponent weakly-ionized plasmas through the drift-diffusion
approximation. The proposed set of equations is advantagedover the conventional one by be-
ing considerably less stiff in quasi-neutral regions because it can be integrated in conjunction
with a potential equation based on Ohm’s law rather than Gauss’s law. The present approach is
advantaged over previous attempts at recasting the system by being applicable to plasmas with
several types of positive ions and negative ions and by not requiring changes to the boundary
conditions. Several test cases of plasmas enclosed by dielectrics and of glow discharges between
electrodes show that the proposed equations yield the same solution as the standard equations
but require 10 to 100 times fewer iterations to reach convergence whenever a quasi-neutral re-
gion forms. Further, several grid convergence studies indicate that the present approach exhibits
a higher resolution (and hence requires fewer nodes to reacha given level of accuracy) when
ambipolar diffusion is present. Because the proposed equations are not intrinsically linked to
specific discretization or integration schemes and exhibitsubstantial advantages with no appar-
ent disadvantage, they are generally recommended as a substitute to the fluid models in which
the electric field is obtained from Gauss’s law as long as the plasma remains weakly-ionized and
unmagnetized.

1. Introduction

W EAKLY-IONIZED plasmas have recently been the focus of increased attention as a means to improve the capabilities
of aircraft. Possible applications of weakly-ionized plasmas that are currently under investigation include (and are

not limited to) boundary layer control on fixed and rotating wings using DBD plasma actuators, power generation on board
high-speed airbreathing vehicles through MHD generators,or thrust production using MHD accelerators. Numerical simula-
tions of weakly-ionized airflow for aerospace applicationshave so far been accomplished mostly using a fluid model (i.e.the
drift-diffusion approximation) [1, 2, 3, 4] because more involved physical models based on kinetic theory require excessive
computational resources at the relatively high densities encountered in plasma aerodynamics, although some progressis being
made in this area [5].

When discretized using finite-difference stencils, the drift-diffusion model in which the potential equation is obtained from
Gauss’s law is well known to be particularly stiff. (A stiff system of equations here denotes a system for which the integration
steplength is forced to be excessively small in relation to the smoothness of the exact solution.) The stiffness becomespartic-
ularly severe in the quasi-neutral regions where the positive charge density approaches closely the negative charge density. To
relieve the stiffness of the system, a strategy was proposedrecently in which the potential equation is obtained from Ohm’s
law rather than Gauss’s law (see Ref. [6] and also Ref. [7]). To ensure that Gauss’s law is satisfied in the non-neutral regions,
some source terms are added to the ion conservation equation. In doing so, it was possible to specify a considerably larger
integration steplength, and this lead to a hundredfold reduction in the number of iterations to reach convergence whenever the
plasma had some regions that were quasi-neutral. Further, it was demonstrated that such a gain in convergence acceleration
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could be obtained with no loss in accuracy: either on coarse or fine meshes, the solution obtained with a potential based on
Ohm’s law had a numerical error that was not greater than the one obtained with a potential based on Gauss’s law.

Nonetheless, the recast set of equations presented in Ref. [6] does have one drawback over the conventional set when
simulating weakly-ionized plasmas. Namely, the boundary condition at the anode needs to be redefined or Gauss’s law would
not be satisfied within the anode sheath close to the surface.This is problematic because the redefined boundary condition is
approximate and it is uncertain whether it would remain valid in the general case. Further, the approach presented in Ref. [6]
is limited to a three-component plasma (one type of positiveions, electrons, and neutrals) in one dimension, and it is not clear
how it could be extended to multidimensional and multicomponent plasmas (plasmas with several types of positive ions and
negative ions).

The goal of this paper is to build upon the ideas presented in Ref. [6] and to derive a new set of electron and ion transport
equations that is more computationally efficient than the conventional set and that is generally applicable to multidimensional
and multicomponent weakly-ionized plasma flows. In addition, in contrast to the approach shown in [6], we aim to find a
formulation that can be used without modifying the boundaryconditions at the electrodes.

This paper is divided as follows: first, we provide a description of the physical model suitable to multicomponent and
multidimensional weakly-ionized plasmas; this is followed by the outline of the “conventional governing equations” (i.e., the
set of equations that is normally used to simulate weakly-ionized plasmas using a fluid model), and then by the proposed
recast of the electron and ion equations; a short summary is then given of the discretization and integration schemes used
herein; finally, some test cases are presented typical of weakly-ionized plasmas encountered in plasma aerodynamics, and the
performance of the proposed set of equations is assessed in terms of the number of iterations needed to reach convergenceand
of the resolution of the converged solution.

2. Physical Model

In this section, a short outline is given of the fluid model that is generally used to simulate weakly-ionized plasmas (i.e.,
plasmas with an ionization fraction less than 0.001 or so). Commonly referred to as the “drift-diffusion model” the physical
model considered is widely used to simulate weakly-ionizedplasmas not only for steady cases but also for unsteady casesin
which the displacement current is not negligible (see for instance Refs. [8, 9, 10, 11, 12, 13, 14, 15]).

Conservation of mass entails the following transport equation for each charged species:
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with Nk being the number density,V k the velocity (including drift and diffusion), andWk the chemical source terms (due to
Townsend ionization, dissociative recombination, etc) ofthekth species. When the plasma is weakly-ionized, it can be shown
[16] that the momentum equation collapses to:
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with V
n the neutrals velocity and withsk the sign of the charge (C1 for positive ions and�1 for negative ions and electrons),

�k the mobility,Ck the charge (�e for electrons,Ce for singly-charged positive ions,�2e for doubly-charged negative ions,
etc, withe the elementary charge). Equation (2) depends on the partialpressurePk which can be found from the density and
the temperature using the ideal gas law:

Pk D NkkBTk (3)

wherekB is the Boltzmann constant andTk is the temperature of speciesk. As well, Eq. (2) depends on the electric fieldE,
which can be found from Gauss’s law:
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where�0 is the permittivity of free space andns refers to the number of charged species. To close the set of equations, we
assume that the curl of the electric field is zero, hence leading to the existence of an electric field potential

Ej D �
@�

@xj

(5)

2



B. Parent, S. O. Macheret, M. N. Shneider, “Electron and Ion Transport Equations in Computational Weakly-Ionized Plasmadynamics”,
Journal of Computational Physics 259 (2014), pp. 51–69.

with � the potential function. The latter holds true as long as the magnetic field is negligible or does not vary in time, which is a
fair assumption for many weakly-ionized plasmas in the absence of an externally-applied time-varying magnetic field because
the current due to the induced magnetic field is typically orders of magnitude less than the current due to the electric field.

An important physical parameter that needs to be extracted from the physical model is the current density. We can obtain
the current density conservation equation by multiplying thekth species transport Eq. (1), by its respective chargeCk, summing
over all species, substituting the species velocity from Eq. (2), and noting that no net charge can be created or destroyed through
the chemical reactions. Then, the following equation wouldbe obtained [16]:
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where the conductivity, the net charge density, and the current density due to drift and diffusion are defined as:
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It is emphasized thatJ is here defined as the current density due to drift and diffusion only, and does not include the displace-
ment current. However, this does not prevent the equations from being used in a situation where the displacement currentis
significant (such as for a RF discharge for instance). For such a case, the charged densities and the potential are obtained using
exactly the same equations as above withJ being limited to the current due to drift and diffusion. The displacement current
needs to be added toJ only when calculating the total current and the phase relations between the applied voltage and the
discharge current needed for the external circuit.

The fluid model outlined above is hence valid both in the non-neutral sheaths and the quasi-neutral regions of weakly-
ionized plasmas, and can predict accurately physical phenomena such as ambipolar diffusion, ambipolar drift, cathodesheaths,
dielectric sheaths, unsteady effects in which the displacement current is significant, etc. Nonetheless, it is noted that the physical
model considered herein makes several assumptions: (i) theplasma is not subject to an external magnetic field and the induced
magnetic field is assumed negligible, (ii) the drag force dueto collisions between charged species is negligible compared to
the one originating from collisions between charged species and neutrals, and (iii) the forces due to inertia change areassumed
small compared to the forces due to collisions. The mathematical expressions for the latter forces as well as the justification for
neglecting them when simulating weakly-ionized plasmas can be found in Ref. [16].

Finally it is cautioned that, because the electric field is obtained from Gauss’s law, the physical model outlined in thissection
can not be used to tackle problems where the electric field is asignificant function of a time-varying magnetic field, such as in
inductively coupled plasmas or microwave induced plasmas.In those cases, the electric field would cease to be a potential field
and would need to be determined through the full or simplifiedMaxwell equations. More details on when Gauss’s law can and
can not be used to determine the electric field can be found in Refs. [17, 18].

3. Conventional Governing Equations

In this section, we give a short outline of the set of differential equations that are commonly used to solve the physical model
outlined in the previous section using finite-difference methods (which we denote as the “conventional governing equations”).
The conventional governing equations correspond to the solution for each charged species (including positive ions, negative
ions and electrons) of the transport equation outlined in Eq. (1) with the velocity taken from Eq. (2) and the partial pressure
obtained from Eq. (3)
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The electric field appearing in the convection terms is obtained by solving the potential equation based on Gauss’s law, which
can be obtained by substituting Eq. (5) into Eq. (4):
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from which the electric field components can be found using Eq. (5).
The transport equations for the charged species can be rewritten in the following matrix form to ease their discretization and

integration:
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whereR is the residual vector that we seek to minimize and where the other matrices correspond to:
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When discretized using finite difference stencils, the set of equations presented in this section and denoted as “conventional” is
well-known to be particularly stiff within quasi-neutral regions. This is attributed to the potential equation based on Gauss’s law
being overly sensitive to small errors in the charged species densities when the plasma becomes quasi-neutral [6]. Thismakes
it necessary to limit the time step to very small values when integrating the electron and ion transport equations, resulting in
hundreds of thousands of iterations necessary to reach steady-state.

4. Recast of the Electron and Ion Transport Equations

As was demonstrated in Refs. [7, 6], the stiffness of the system can be alleviated by rewriting the equations such that the
electric field potential is not obtained from Gauss’s law, but rather from Ohm’s law. In so-doing, the potential equationis not
overly sensitive to small errors in the densities, and the computational effort can be reduced one hundred fold or even more.
The methods presented in Refs. [7] and [6] are however not directly applicable to multidimensional multicomponent plasmas.
In this section, we propose a new set of transport equations for the charged species that, when solved in conjunction witha
potential equation based on Ohm’s law, yields the same answer as the conventional governing equations outlined in Section 3
while requiring a fraction of the computational effort for plasmas involving quasi-neutral regions.

4.1. Positively-Charged Species

When the electric field is obtained from Ohm’s law rather thanfrom Gauss’s law, it is necessary to add some source terms to
the positive ion transport equations to ensure that Gauss’slaw is satisfied. This can be accomplished as follows. First,substitute
the velocity in Eq. (2) into Eq. (1), and simplify noting thatsk D 1 andCk is positive for the positive ions:
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The source terms that must be added to ensure that Gauss’s lawis satisfied can be obtained by multiplying Gauss’s law Eq. (4)
by �kNk and rearranging:
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Then, we add the latter to the former to obtain:
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And we note that the following statement holds:
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Substitute the latter in the former and rearrange:
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Rewrite the partial pressure term using the ideal gas lawPk D NkkBTk, expand the pressure derivatives, and rearrange:
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The latter is the proposed transport equation for the positive ions. It differs from the standard form (Eq. (1)) by including some
source terms to ensure that Gauss’s law is satisfied when the equations are integrated along with a potential equation based on
Ohm’s law. However, this modification to the transport equations reduces their resolution capabilities with the consequence that
significantly more nodes are needed to capture sheaths and quasi-neutral regions.

4.2. Negatively-Charged Species

One approach that has been shown successful in increasing the resolution of the system of equations is to rewrite the electron
transport equation in “ambipolar form” [6]. A transport equation can be written in “ambipolar form” by extracting from the
convection terms the ambipolar diffusion terms [19]. Effectively, this increases the computational efficiency when integrating
the system because the transport equations for the charged species do not depend as much on the potential. It is here found
necessary to rewrite in ambipolar form not only the electrontransport equation, but also the transport equations for the negative
ions. In doing so, the proposed system of equations (in whichthe potential is obtained from Ohm’s law) exhibits a resolution
as high (or even exceeding) the one of the conventional set ofequations in which the potential is obtained from Gauss’s law.

The ambipolar form outlined herein differs from the one outlined in Ref. [19] by being applicable to a non-neutral plasma
and from the one outlined in Ref. [6] by being applicable to a multicomponent plasma. As well, the recast proposed in this
section fixes a major problem that was encountered with the ambipolar form in a previous paper: that is, the method proposed
herein can be integrated successfully within the negatively-charged plasma region near the anode without requiring a rewrite
of the anode boundary conditions. This is here accomplishedby defining slightly differently the so-called “ambipolar electric
field”. In the previous papers, the ambipolar electric field was defined as the component of the electric field that is responsible
for cancelling out the component of the current originatingfrom the mass diffusion of the charged species. In this paper, we
rather define the ambipolar electric field as the component ofthe electric field that cancels out all components of the current
except due to drift:
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After substituting the current from Eq. (9) and using the ideal gas lawPr D NrkBTr , it can be shown that:
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wherekB is the Boltzmann constant andTr is the temperature of speciesr . Having defined the ambipolar electric field, we now
proceed to recast the negatively-charged species in ambipolar form. This can be done by first substituting the velocity in Eq.
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(2) into the species transport equation Eq. (1) while notingthatsk D �1 when the species is negatively-charged:
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Then we use the relationshipPk D NkkBTk, expand the partial derivatives, and rewrite:
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The latter can be recast in ambipolar form without loss of generality by adding and subtractingE0 to the electric field:
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After substitutingE0 from Eq. (22) in the third term on the LHS and rearranging, we obtain:

@Nk

@t
C

3
X

iD1

@

@xi

�

NkV
n

i
� �kNk .E � E

0/i

�

�

3
X

iD1

@

@xi

 

�kNk

ns
X

rD1

sr�rkBTr

�

@Nr

@xi

!

�

3
X

iD1

@

@xi

�

�kkBTk

jCkj

@Nk

@xi

�

D Wk C

3
X

iD1

@

@xi

�

�kkBNk

jCkj

@Tk

@xi

�

C

3
X

iD1

@

@xi

 

�kNk

ns
X

rD1

sr�rkBNr

�

@Tr

@xi

!

�

3
X

iD1

@

@xi

 

�kNk

ns
X

rD1

CrNr

�
V

n
i

! (26)

Split the second-last term on the LHS in two and simplify:
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Combine the last 2 terms on the LHS:
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But recall from Eq. (21) thatEi � E
0
i

D Ji =� . After substituting the latter in the above and splitting the derivative involving
the current into two terms, we obtain:
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But note that, after substituting Eq. (8) into Eq. (6), the divergence of the current can be written as:

3
X

iD1

@Ji

@xi

D �

ns
X

rD1

Cr

@Nr

@t
(30)

Then, after substituting the latter in the former and regrouping similar terms together, the following is obtained:

� � jCkj�kNk

�

@Nk

@t
C

r¤k
X
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Cr�kNk

�

@Nr

@t
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3
X

iD1
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@xi

�
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i

�

�
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X
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�

�kNk
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X
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X
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@xi

�

�kNksr�rkBTr

�

@Nr
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�

�

3
X

iD1

@

@xi

�

� � jCkj�kNk

� jCk j
�kkBTk

@Nk

@xi

�

D Wk

C

3
X

iD1
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@xi

�

�kkBNk

jCkj

@Tk

@xi

�

C
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X

iD1

@

@xi

 

�kNk
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X
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�

@Tr

@xi

!

�

3
X

iD1

@

@xi
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�
V

n
i

!

(31)

The latter is the proposed “ambipolar form” of the transportequation for the negatively-charged species. It must be used not
only for the electrons but for all negative ions. It is emphasized that the recast Eq. (31) is obtained from the physical model
outlined in Section 2 without making any assumption.

5. Proposed Governing Equations

We can combine the transport equation for the positively-charged species, Eq. (20) and the transport equation for the negatively-
charged species, Eq. (31) into a single equation:

� � ˇ�
k
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�
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�
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(32)

whereˇC D 1 andˇ� D 0 for the positively-charged species andˇC D 0 andˇ� D 1 for the negatively-charged species. We
can expresš ˙ in a single expression as follows:

ˇ˙
k

D max.0; ˙ sk/ (33)

The current density is obtained from Eq. (9) while the electric field is obtained from the potential equation based on Ohm’s law.
The potential based on Ohm’s law can be obtained by substituting Eqs. (5), (9) and (8) in the current continuity (Eq. (6)) and
rearranging:
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X

iD1
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@xi

�

��
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@xi
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D �
@�e
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3
X
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kD1
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� �eV
n

i

!

(34)

To simplify the discretization and integration processes,it is convenient to rewrite Eq. (32) in general matrix form asfollows:

R D Z
@U

@t
C

3
X

iD1

@

@xi

.Ai U / C

3
X

iD1

Gi

@

@xi

.BU / �

3
X

iD1

@

@xi

�

K
@U

@xi

�

� S (35)

whereR is the residual vector that we seek to minimize and where the other matrices correspond to:
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�
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�
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(36)
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K D

2

6

6

4

ŒK�1;1 � � � ŒK�1;ns

:::
: : :

:::

ŒK�ns;1 � � � ŒK�ns;ns

3

7

7

5

with ŒK�r;k D

8

ˆ

ˆ

<

ˆ

ˆ

:
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ˇ�
r
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�
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(37)
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2

6

6

4

ŒZ�1;1 � � � ŒZ�1;ns

:::
: : :

:::

ŒZ�ns;1 � � � ŒZ�ns;ns

3

7

7

5
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8

ˆ
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ˆ

:

� � ˇ�
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ˇ�
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�
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(38)
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(39)

It is emphasized that the transport equations proposed in Eq. (35) along with the potential equation based on Ohm’s law outlined
in Eq. (34) are obtained from the physical model outlined in Section 2without introducing new assumptions or simplifications.
As such, they always guarantee that Gauss’s law is satisfied and yield the same solution as the conventional governing equations
shown previously in Section 3, in which the potential equation is based on Gauss’s law (see proof in the Appendix demonstrating
how the proposed set of equations ensures the solution of Gauss’s law). This is true not only for steady-state cases but also for
unsteady cases in which the displacement current becomes significant such as when simulating RF discharges for instance(see
discussion on this point just below Eq. (9)). However, because the potential equation is based on Ohm’s law instead of Gauss’s
law, the proposed set of governing equations is advantaged by being easier to integrate in plasma regions that are quasi-neutral.
As will be shown in the Test Cases section below, this resultsin a fourtyfold (or more) reduction in computational effortfor
some typical flowfields, while not compromising on the accuracy of the converged solution.

6. Boundary Conditions

The set of governing equations based on Ohm’s law proposed inthis paper can be used with the same boundary conditions
normally used when solving the conventional set of equations based on Gauss’s law. For this purpose, it is convenient to define
� as a coordinate that is perpendicular to the boundary surface and that points away from the surface. Then, when the electric
field points towards the surface (or when the surface is a dielectric) the electron and ion number densities are set at the surface
as follows:

@.NCVC/

@�
D 0 and N� D 0 and Ne D



�e

ns
X

kD1

Nk�kˇC
k

for E� < 0 (40)

with  being the secondary emission coefficient, the subscript “e”denoting the electron species, the subscript “�” denoting the
negative ion species, and the subscript “C” denoting the positive ion species. On the other hand, when the electric field points
away from the surface, the following boundary conditions are imposed on the charged species densities:

NC D 0 and
@.N�V�/

@�
D 0 and

@.NeVe/

@�
D 0 for E� > 0 (41)

When the surface is an electrode, the potential is fixed to a user-defined value. When the surface is a dielectric, the potential
must be such that the current perpendicular to the dielectric is zero. A boundary condition for the potential on a dielectric
surface can thus be obtained by first setting the current in Eq. (9) to zero and then noting thatE� D �@�=@�:

@�

@�
D �

1

�

ns
X

kD1

sk�k

@Pk

@�
(42)

For certain flowfields, it may be necessary to underrelax the change of the electron density at the boundary and to determine
the electric fieldE� using the minmod of the electric fields at the two interfaces closest to the boundary (as done in Ref. [6]).
However, contrarily to the approach shown in Ref. [6], it is not necessary to modify the boundary conditions at the anode in

8



B. Parent, S. O. Macheret, M. N. Shneider, “Electron and Ion Transport Equations in Computational Weakly-Ionized Plasmadynamics”,
Journal of Computational Physics 259 (2014), pp. 51–69.

order to ensure that Gauss’s law is satisfied within the anodesheath. Rather, we here use the same boundary conditions forthe
proposed governing equations (in which the potential is obtained from Ohm’s law) as for the conventional governing equations
(in which the potential is obtained from Gauss’s law). This is attributed to an additional transformation of the equations,
introduced between Eq. (29) and Eq. (31): because of the different definition of the ambipolar electric field, some spatial
derivatives within the negatively-charged species transport equations can be recast in the form of a temporal derivative by using
the current continuity equation. This additional transformation reduces the dependence of the transport equations onthe electric
field, resulting in a higher resolution within the anode sheath.

7. Discretization and Integration

The discretization of the potential equation (see Eq. (34))does not pose any particular problem and is here accomplished
using centered second-order accurate stencils for the spatial derivatives and using first-order backward stencils forthe time
derivatives. The potential equation is advanced in pseudotime using an approximate factorization implicit algorithmas outlined
in Refs. [16, 19], with the pseudotime step being fixed to a constant for all nodes. That is, the pseudotime step for all nodes is
fixed to the minimum throughout the domain found from:

��� D

8

ˆ

ˆ

<

ˆ

ˆ

:

Lc �
3

min
iD1

�

�xi

�ref C �

�

for the potential based on Ohm’s law

Lc �
3

min
iD1

.�xi / for the potential based on Gauss’s law
(43)

with �ref a user-defined constant typically set to 0.003 S/m andLc a characteristic length that is varied depending on the problem
(typically set to some average distance between the electrodes). It is found that faster convergence can be attained when varying
the characteristic lengthLc cyclically from iteration to iteration, such asLc D 1; 0:1; 10; 1; 0:1 m; etc. Exactly howLc is varied
will be specified case by case in the Test Cases section below.

The discretization of the charged species transport equations (see Eq. (35)) is accomplished by splitting the derivatives along
each dimension and discretizing the so-obtained one-dimensional derivatives using one-dimensional stencils (i.e. dimensional
splitting). The one-dimensional stencils used herein for the various types of derivatives are taken from Ref. [6]. In solving
the discretized charged species transport equations, an approximate factorization algorithm is used along with a block-implicit
algorithm in which the convection, diffusion and source terms are all linearized and hence treated in an implicit manner. For
this purpose, a pseudotime derivative is added to the left-hand-side of the equations. It is noted that the pseudotime step is set
to the same value over all nodes, and corresponds to the minimum pseudotime step within the domain found from:

��N D CFL �
3

min
iD1

�

�xi

aref C �e jEi � E
0
i j

�

(44)

with �e the electron mobility,aref a constant typically set to 300 m/s, and CFL a constant variedfrom case to case to achieve
fastest convergence.

TABLE 1.
3-species 3-reactions air plasma chemical model with electron beam ionization.

No. Reaction Rate Coefficienta References

1 e� C Air ! Air C C e� C e� exp.�0:0105031 � ln2
E? � 2:40983 � 10�75 � ln46

E?/ cm3/s [20, 17, 21]b

2 Air ! e� C Air C 1:84 � 1017 � Q?
b 1/s [22]

3 e� C Air C ! Air 2:24 � 10�7 � .300=Te/
0:5 C 0:4 � 10�7 � .300=Te/

0:7 cm3/s [23]c

a Notation and units:Te is in Kelvin; T is in Kelvin; E? is the reduced electric field (E? � jEj=N ) in units of V�m2; Q?
b is the ratio in

Watts between the electron beam power per unit volumeQb and the total number density of the plasmaN (Q?

b � Qb=N ).
b The rate coefficient approximates the Townsend ionization rates given in [20] and in [17, p. 56] with the drift velocity taken from [21,

Ch. 21]; The rate coefficient can be used in the range3 � 10�20 � E? � 240 � 10�20 V � m2 with a relative error on the ionization rate not
exceeding 20%.

c The rate coefficient approximates the dissociative recombination reactions e� CNC
2 ! NCN and e� COC

2 ! OCO assuming a NC2 :OC
2

ratio of 4:1.
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TABLE 2.
6-species 15-reactions air plasma chemical model with electron beam ionization.a;b

No. Reaction Rate Coefficient Refs.

1a e� C N2 ! NC
2 C e� C e� exp.�0:0105809 � ln2

E? � 2:40411 � 10�75 � ln46
E?/ cm3/s [21, 20, 17]c

1b e� C O2 ! OC
2 C e� C e� exp.�0:0102785 � ln2

E? � 2:42260 � 10�75 � ln46
E?/ cm3/s [21, 20, 17]c

2a e� C OC
2 ! O2 2:0 � 10�7 � .300=Te/

0:7 cm3/s [24]d

2b e� C NC
2 ! N2 2:8 � 10�7 � .300=Te/

0:5 cm3/s [23]d

3a O�
2 C NC

2 ! O2 C N2 2:0 � 10�7 � .300=T /0:5 cm3/s [23]

3b O�
2 C OC

2 ! O2 C O2 2:0 � 10�7 � .300=T /0:5 cm3/s [23]

4a O�
2 C NC

2 C N2 ! O2 C N2 C N2 2:0 � 10�25 � .300=T /2:5 cm6/s [23]

4b O�
2 C OC

2 C N2 ! O2 C O2 C N2 2:0 � 10�25 � .300=T /2:5 cm6/s [23]

4c O�
2 C NC

2 C O2 ! O2 C N2 C O2 2:0 � 10�25 � .300=T /2:5 cm6/s [23]

4d O�
2 C OC

2 C O2 ! O2 C O2 C O2 2:0 � 10�25 � .300=T /2:5 cm6/s [23]

5a e� C O2 C O2 ! O�
2 C O2 1:4 � 10�29 � .300=Te/ � exp.�600=T / � exp

�

700.Te�T /

TeT

�

cm6/s [23]

5b e� C O2 C N2 ! O�
2 C N2 1:07 � 10�31 � .300=Te/

2
� exp.�70=T / � exp

�

1500.Te�T /

TeT

�

cm6/s [23]

6 O�
2 C O2 ! e� C O2 C O2 8:6 � 10�10 � exp.�6030=T / � .1 � exp.�1570=T // cm3/s [25, Ch. 2]

7a O2 ! e� C OC
2 2:0 � 1017 � Q?

b 1/s [26]

7b N2 ! e� C NC
2 1:8 � 1017 � Q?

b 1/s [26]

a The species consist of NC
2 , OC

2 , O�
2 , e�, O2, N2.

b Notation and units:E? is the reduced effective electric field (E? � jEj=N ) in units of V�m2; Te is the electron temperature in Kelvin;T

is the neutrals temperature in Kelvin;Q?
b is the ratio in Watts between the electron beam power per unitvolumeQb and the total number

density of the plasmaN (Q?
b � Qb=N ).

c The rate coefficient approximates the Townsend ionization rates given in [20] and in [17, p. 56] with the drift velocity taken from [21,
Ch. 21]; The rate coefficient for N2 ionization can be used in the range3 � 10�20 � E? � 187 � 10�20 V � m2 with a relative error on the
ionization rate not exceeding 17%; The rate coefficient for O2 ionization is obtained from the rate for air and the one for N2 assuming a
N2:O2 ratio of 4:1.

d The reaction rates for the dissociative recombination reactions e� COC
2 ! OCO and e� CNC

2 ! NCN are here rewritten for simplicity
to e� C OC

2 ! O2 and e� C NC
2 ! N2 (to avoid the handling of the additional O and N species).

In order to make the pseudotime integration stable it is found necessary not to fully linearize the electron impact ionization
(i.e. Townsend ionization) terms. Rather, we here propose apartial linearization of the Townsend ionization terms that is stable
and that results in faster convergence. This is accomplished by first rewriting the electron impact source terms as a function of
current (instead of electric field), and then linearizing under the condition of quasi-constant current. For this purpose, we can
rewrite the reduced electric field as:

jEj

N
D

j�j

�
(45)

After obtaining the electric field as a function of the current from Eq. (9) and substituting, it follows that�i is equal to:

�i D
1

N

 

Ji C

ns
X

kD1

sk�k

@Pk

@xi

�

ns
X

kD1

CkNkV
n

i

!

(46)

Then note that the electron impact ionization rates can be written as follows (see reaction 1 in Table 1 and reactions 1a and 1b
in Table 2):

kei D exp.��1 � ln2
E? � �2 � ln46

E?/ (47)

with �1 and�2 some constants. SubstituteE? D jEj=N D j�j=� in the latter and take the derivative with respect to� on both
sides keeping� constant (a constant� essentially entails a constant current density because� depends mostly on the current
densityJ within the cathode sheath where the Townsend ionization takes place):

�

@kei

@�

�

�

D kei

�

2�1

�
ln E? C

46�2

�
ln45

E?

�

(48)
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But recall that the conductivity is proportional to the number density of each species (Eq. (7)). Assuming constant mobilities,
it follows that:

�

@kei

@Nk

�

�

D

�

@�

@Nk

�

�

�

�

@kei

@�

�

�

D jCkj�kkei

�

2�1

�
ln E? C

46�2

�
ln45

E?

�

(49)

For instance, consider a plasma composed of O2, N2, NC
2 , OC

2 , O�
2 , and electrons. The Townsend ionization ratek1a for the

reaction e� C N2 ! NC
2 C e� C e� can be approximated by Eq. (47) with�1 D 0:0105809 and�2 D 2:40411 � 10�75. The

U vector in this case would be limited to the charged species and would hence correspond toU D ŒNOC
2

NNC
2

NO�
2

Ne�
T. The

contributions to the source term JacobianM D @S=@U originating from reaction 1a would then amount to:

M1a D

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0

NN2Ne

 

@k1a

@NOC
2

!

�

NN2Ne

 

@k1a

@NNC
2

!

�

NN2Ne

 

@k1a

@NO�
2

!

�

NN2Ne

�

@k1a

@Ne

�

�

0 0 0 0

NN2Ne

 

@k1a

@NOC
2

!

�

NN2Ne

 

@k1a

@NNC
2

!

�

NN2Ne

 

@k1a

@NO�
2

!

�

NN2Ne

�

@k1a

@Ne

�

�

3

7

7

7

7

7

7

7

7

7

7

5

(50)

where the various.@k1a=@Nk/� terms are taken from Eq. (49). The source term JacobianM includes the contributions from all
chemical reactions as well as the contribution from the extra source term added to the positively-charged transport equations to
ensure that Gauss’s law is satisfied:

M D Mg C M1a C M1b C M2a C ::: (51)

with Mg including only the negative source term needed to enforce Gauss’s law:

Mg D

2

6

6

6

4

�

Mg

�

1;1
� � �

�

Mg

�

1;ns

:::
: : :

:::
�

Mg

�

ns;1
� � �

�

Mg

�

ns;ns

3

7

7

7

5

with
�

Mg

�

r;k
D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�
1

�0

ˇC
r

�r

ns
X

mD1

max.0; Cm/ Nm if r D k

�
1

�0

ˇC
r

�rNr max.0; Ck/ otherwise

(52)

It is emphasized that only the electron-impact reactions are linearized as in Eq. (50). The other chemical reactions do not pose
any problem and are linearized in the standard manner by taking the partial derivative of the chemical source term with respect
to a particular number density (keeping the other number densities constant).

One iteration consists of first advancing in pseudotime in coupled form the transport equations for the number densities
while keeping the potential constant. This is followed by 2 or 3 subiterations in pseudotime of the potential equation keeping
the number densities constant. The process is repeated as long as the residual of all charged species transport equations and of
the potential equation is above some user-specified convergence thresholds. When solving certain sheath problems, it is found
necessary to perform some pseudotime subiterations of the potential because the latter is more sensitive to errors originating
from approximate factorization (which can be reduced through subiterations).

It is deemed sometimes necessary to limit the electric field used to compute the Townsend ionization source terms in order
to prevent the solution to diverge towards aphysical statesat high CFL numbers. The approach recommended is to limit the
electric field such that the resulting current density (proportional to the product of the electric field and the conductivity) does
not exceed a certain user-specified value:

E? D
1

N

0

@

3
X

iD1

 

min
�

Jmax; max
�

�Jmax; minmod
�

.�Ei /Xi �1=2 ; .�Ei /Xi C1=2

���

max
�

�Xi�1=2
; �XiC1=2

�

!2
1

A

1
2

(53)

whereE? is the reduced electric field used to determine the Townsend ionization reaction rates,N is the total number density of
the plasma (including neutrals), andJmax is a user-specified maximum current which is typically set toabout 3 times the expected
maximum current density within the domain. Also, the minmodfunction returns the argument with the lowest magnitude, and
Xi refers to the grid index along thei th dimension (i.e.Xi �1=2 refers to the interface just ahead of the node under consideration
along thei th dimension). It is emphasized that such a limitation of theelectric field is only performed when computing the
Townsend ionization terms, and does not affect the converged solution as long as the user-specifiedJmax is higher than� jEj at
any location within the converged solution.
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TABLE 3.
Ion and electron mobilities in dry air.a

Charged species Mobility, m2 � V�1 � s�1 Reference

Air C N �1 � min
�

0:84 � 1023 � T �0:5; 2:35 � 1012 � .E?/
�0:5

�

[27]b

NC
2 N �1 � min

�

0:75 � 1023 � T �0:5; 2:03 � 1012 � .E?/
�0:5

�

[27]

OC
2 N �1 � min

�

1:18 � 1023 � T �0:5; 3:61 � 1012 � .E?/
�0:5

�

[27]

O�
2

N �1 � min
�

0:97 � 1023 � T �0:5; 3:56 � 1019 � .E?/
�0:1

�

[28]

e� N �1 � 3:74 � 1019 � exp
�

33:5 � .ln Te/
�0:5

�

[21, Ch. 21]c

a Notation and units:Te is in Kelvin; T is in Kelvin; N is the total number density of the plasma in 1/m3; E? is the reduced effective
electric field (E? � jEj=N ) in units of V�m2.

b The “air ion” mobility is obtained from the NC2 and OC
2 ion mobilities assuming a NC2 :OC

2 ratio of 4:1.
c The expression approximates the data given in Chapter 21 of Ref. [21]; The equation can be used in the range1000 K � Te � 57900 K

with a relative error on the mobility not exceeding 20%. In the range287 K � Te < 1000 K, the relative error is less than 30%.
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FIGURE 1. Number density profiles for the 1D multicomponent test case between two dielectrics; the grid is composed of 200 equally spaced
nodes for both the proposed and conventional governing equations.

8. Test Cases

We now consider several test cases to assess the performanceof the proposed governing equations. Specifically, becausequasi-
neutral regions are particularly difficult to solve, emphasis is put on assessing the gains in convergence accelerationwhen
using the proposed set of equations for some plasma flow fieldsthat include quasi-neutral regions. As well, because the gains
in convergence acceleration may be accompanied by a loss of resolution, some emphasis is put on determining whether the
proposed transport equations achieve as high a resolution as the conventional equations for some key plasma problems. The
performance is first assessed for a multicomponent plasma (including several positive ion species and some negative ionspecies
as well) in 1D. This is followed by a two-dimensional test case.

8.1. 1D Multicomponent Plasma

Consider first an electron-beam ionized multicomponent airplasma in 1D composed of NC
2 , OC

2 , O�
2 , e�, N2 and O2. The

electron temperature is fixed to 20,000 K, the N2 number density to1:93�1024 m�3, the O2 number density to4:83�1023 m�3,
and the mobilities of the various charged species are taken from Table 3. For simplicity, the chemical reactions are limited
to those listed in Table 2 and do not involve dissociated species or excited species (as in Ref. [5] for instance). Adding more
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FIGURE 2. Potential and current density components for the 1D multicomponent test case using a mesh of 400 equally-spaced nodes; (a)
electric field potential with the “exact” solution obtainedusing the conventional equations and a mesh of 1600 nodes (when using 1600 nodes,
negligible differences are observed between the proposed and conventional equations); (b) current density components using the proposed
equations.
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FIGURE 3. Residual history for the 1D multicomponent test case between two dielectrics; the grid is composed of 200 equally spaced nodes
for both the proposed and conventional governing equations; the CFL number is fixed to 0.5 in both cases.

chemical reactions is not expected to yield significant differences for the test case under consideration and would complicate the
physical model unnecessarily. The domain is 1 cm long with the left and right boundaries set to dielectrics, where the secondary
emission coefficient is set to 0.1. Because the density of the negative ions and electrons is within the same range as the one of
the positive ions, such a problem serves as a capable test case to evaluate the performance of the proposed governing equations
in simulating multicomponent plasmas where negative ions play an important role. Due to the electron beam power deposited
being set to an appreciable value of105 W/m3, a quasi-neutral region forms in the middle of the domain accompanied by an
ambipolar diffusion region near the surfaces (see the number density profiles in Fig. 1). As can be observed from Fig. 2 and
as expected from theoretical considerations, the current due to the negative species cancels out the current due to the positive
species and the potential drop in Volts through the ambipolar diffusion region is in the same order of magnitude as the electron
temperature in electronvolts (hereTe D 20000 K D 1:72 eV). When using a grid composed of 200 equally-spaced nodes,a CFL
number of 0.5 combined with a length scaleLc of 1000 m is found to yield the fastest convergence for both the proposed and
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TABLE 4.
Relative error assessment in solving the 1D test case at steady-state.a;b

Governing equations Average relative error

1

LNref

Z L

0

jNe � .Ne/exactj dx
1

L�ref

Z L

0

j� � �exactj dx

100 nodes 200 nodes 400 nodes 100 nodes 200 nodes 400 nodes

Proposed 2.3% 0.56% 0.13% 1.8% 0.47% 0.12%
Conventional 5.4% 1.8% 0.56% 3.7% 1.2% 0.38%

a The “exact” solution is obtained using the proposed governing equations on a grid composed of 1600 equally-spaced nodes.
b The domain lengthL is set to 3 mm, the reference ion number densityNref is set to1017/m3, and the reference potential�ref is set to 100 V.

Air plasma
Nn D 2:414 � 1024 m�3

Te D 20000 K
T D 300 K
Qb D 2 � 106 W/m3

0.3022

0.3022
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1

Dielectric, D 0:1

Cathode
� D 0 V
 D 0:1

Anode
� D 800 V

x

y

FIGURE 4: Problem setup for the two-dimensional glow discharge test case; all dimensions in millimeters.

the conventional governing equations. As attested by the residual histories shown in Fig. 3, the use of the proposed governing
equations results in a substantial fiftyfold decrease in thenumber of iterations to reach convergence. The slow convergence
of the conventional governing equations is due to the potential being obtained from Gauss’s law amplifying the relativeerror
of the number densities when the plasma is quasi-neutral (see Ref. [6] for a more thorough discussion on this point). Such
an error amplification is avoided by obtaining the potentialfrom Ohm’s law as is the case when using the proposed governing
equations, hence resulting in a large decrease in computingtime to reach convergence. Further, not only does the proposed set
of equations result in fewer iterations to reach convergence, but it does so by exhibiting a higher resolution (a higher resolution
here implies a lower numerical error on a given mesh). Indeed, as outlined in Table 4, a grid convergence study indicates that
the relative error is reduced 2-4 times when using the proposed set of equations. This is not due to a difference in discretization
strategies: for both approaches, the same stencils are usedto discretize the convection, diffusion, and source terms.Rather, the
higher resolution of the proposed equations is attributed to some of the convection terms being recast in ambipolar diffusion
form, hence minimizing the large discretization error thatis associated to a physical situation where some of the diffusion terms
cancel out the convection terms, as is the case with ambipolar diffusion.

8.2. 2D Glow Discharge

The second test case consists of a two-dimensional glow discharge in air under strong electron beam ionization with an abnormal
current density regime. The air plasma is composed of 3 components: positive “air” ions, electrons, and neutrals. The mobilities
are taken from Table 3 and the chemical reactions are taken from Table 1. The domain dimensions and the boundary conditions
are as depicted in Fig. 4, and are such that a glow discharge takes place between the two electrodes with a substantial quasi-
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FIGURE 5. Ion and electron number density contours for the 2D glow discharge test case obtained using the proposed equations anda
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FIGURE 6. Potential contours and current density streamlines for the 2D glow discharge test case obtained using the proposed equations and
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neutral region near the anode due to the strong e-beam power deposited (see the electron and ion density contours in Fig.
5), with most of the potential drop being located near the cathode (see Fig. 6). Such serves as a good test case to assess the
performance of the proposed equations when simulating 2D cathode sheaths and anode sheaths in conjunction with a quasi-
neutral region of substantial size. The characteristic lengthLc on which the pseudotime step of the potential equation depends
is varied cyclically as follows: 0.5 mm, 5 mm, 50 mm, 0.5 mm, 5 mm, etc. Further, to keep the solution within physical bounds,
it is found necessary to perform 3 subiterations of the potential equation for each iteration of the charged species transport
equations. In Fig. 7, the electron density maximum residualis plotted as a function of the iteration count for both sets of
governing equations. The CFL number is adjusted in each casesuch as to yield the fastest possible convergence: it is firstset to
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FIGURE 7. Maximum electron density residual versus the iteration count for the 2D glow discharge test case; the mesh is composedof 87�87

equally spaced nodes for both the proposed and conventionalgoverning equations; the CFL number is fixed such as to resultin the fastest
convergence possible (i.e. the CFL is set initially to 10 andis raised at a rate of 0.4% each iteration until it reaches2000 for the proposed
equations and until it reaches40 for the conventional equations).

10, and then increased at a rate of 0.4% per iteration until itreaches 40 for the conventional equations or 2000 for the proposed
equations. Increasing the CFL number further would either lead to slower convergence or to divergence towards aphysical
states. As can be seen from the convergence histories, a fourtyfold decrease in the number of iterations is achieved whenusing
the proposed set of equations. Such a large difference in theamount of iterations needed to reach convergence is not due to a
different integration strategy used: in both cases, the convection, diffusion and source terms are all treated implicitly and the
Townsend ionization source terms are linearized in the samemanner as specified above in Section 7. The slow convergence of
the conventional equations is rather due to the error amplification within the potential equation based on Gauss’s law preventing
the CFL number from being raised substantially in quasi-neutral regions. When using the proposed equations in which the
potential is obtained from Ohm’s law, there is no such error amplification and the CFL number can be raised to values 50 times
higher (or more), hence yielding substantial gains in convergence acceleration. It is emphasized that such gains in convergence
acceleration are not accompanied by a decrease in resolution. In fact, the use of the proposed equations is found to sometimes
result in anincreasein resolution in regions where ambipolar diffusion plays animportant role. For instance, a grid convergence
study of the current density contours for the glow dischargetest case under consideration (see Fig. 8) reveals that the proposed
equations can achieve the same resolution as the conventional equations using a mesh made of 2-4 times fewer grid points.For
this problem, not only does the present approach yield benefits in terms of convergence acceleration, but it also yields benefits
in terms of resolution of the converged solution, thereforeresulting in much improved computational efficiency.

When solved using iterative methods such as the pseudotime stepping block-implicit algorithm employed herein, glow
discharge problems are well known to be particularly sensitive to the initial conditions: should the number densities be set
initially to values differing too significantly from the converged solution, divergence towards aphysical states may ensue. To
determine the sensitivity of the convergence to the initialconditions for the glow discharge shown herein, the initialelectron
and the initial ion densities are varied over the range0 < Ne < 1018 m�3 and0 < Ni < 1018 m�3. Varying the initial number
densities in this manner is found not to result in a substantial change in the number of iterations needed for convergence, either
for the conventional or for the proposed governing equations.

Nonetheless, further investigation reveals that the initial conditions can have a substantial impact on the convergence char-
acteristics for different glow discharge problems. For instance, consider the same geometry and same conditions as presented in
Fig. 4, but with the electron beam power deposited set to zeroand with the voltage difference between the anode and the cathode
set to 1800 V instead of 800 V. When solving such a case to steady-state using a pseudotime iterative approach, the values given
initially to the ion and electron densities are found to affect the convergence behavior significantly. For the proposedgoverning
equations, it is deemed necessary to set the initial electron or ion densities higher than2�1012 m�3 or the solution continuously
oscillates without converging. For the conventional governing equations, it is deemed necessary to set the initial electron or ion

16



B. Parent, S. O. Macheret, M. N. Shneider, “Electron and Ion Transport Equations in Computational Weakly-Ionized Plasmadynamics”,
Journal of Computational Physics 259 (2014), pp. 51–69.

500

1000

1500

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
y

,m
m

Conventional equations,44 � 44 mesh

500

1000
1500 1000

1500

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Proposed equations,44 � 44 mesh

500

1000

15
00

500

1000

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

y
,m

m

Conventional equations,87 � 87 mesh

500

1000

1500
1000

1500

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Proposed equations,87 � 87 mesh

500

1000
1500

2000 1000

1500

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

x, mm

y
,m

m

Conventional equations,173 � 173 mesh

500

1000

1500
2000 1500

1500
2000

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

x, mm

Proposed equations,173 � 173 mesh

FIGURE 8. Comparison between the proposed and conventional equations on the basis of current density contours (jJ j in Amps per square
meter) for the glow discharge test case using various grids.

densities lower than1019 m�3 or the solution diverges towards aphysical states. Interestingly, the proposed equations do not
converge when the initial densities are set too low but do notexhibit any convergence problem when the initial densitiesare
set too high. On the other hand, the standard equations exhibit the opposite behaviour by diverging towards aphysical states
only when the initial densities are set to too high values. Several other test cases yield a similar conclusion: althoughthe use
of the present approach may affect the range of adequate initial densities, such has both advantages and disadvantages over the
conventional approach and is not a particular source of concern because the range of initial densities is not overly restrictive.

9. Conclusions

A new formulation of the electron and ion transport equations is presented to simulate steady or unsteady quasi-neutralor
non-neutral weakly-ionized multicomponent plasmas in multiple dimensions through the drift-diffusion approximation. The
proposed transport equations differ from the standard onesby being integratable alongside a potential equation basedon Ohm’s
law rather than Gauss’s law. The proposed governing equations are obtained from the standard set without making any assump-
tion or simplification. As such, they yield the same solutionwhen the grid is refined sufficiently and can predict the whole
range of phenomena taking place within weakly-ionized plasmas including quasi-neutral effects (ambipolar drift, ambipolar
diffusion), non-neutral effects (cathode sheaths, anode sheaths, dielectric sheaths), unsteady effects where the displacement
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current is significant, etc.
Because the charged species transport equations presentedherein can be solved in conjunction with a potential based on

Ohm’s law rather than Gauss’s law, they do not suffer from very slow convergence in quasi-neutral regions. Several test cases
(including high current glow discharges and currentless plasmas enclosed by dielectrics) indicate that the proposed approach
typically result in a 10-100 times decrease in computational effort whenever the plasma includes a quasi-neutral region of
substantial size. Other test cases show that, when no quasi-neutral region is present, both sets of equations converge at a similar
rate.

Several grid convergence studies confirm that such gains in convergence acceleration are obtained while not sacrificing
on the resolution of the converged solution. When simulating glow discharges or other highly non-neutral plasmas in which
ambipolar diffusion or drift do not play a dominant role, thesolution obtained with the proposed set of equations exhibits a
numerical error not greater than the one obtained using the standard set. When simulating plasmas in which ambipolar diffusion
plays an important role (such as currentless quasi-neutralplasmas enclosed by dielectrics), the present approach exhibits a
resolution that is significantly higher than the standard one. That is, a solution obtained with the proposed equations on a coarse
mesh is as accurate as the one obtained with the conventionalequations on a finer mesh. This gain in resolution is attributed to
the electron transport being rewritten in ambipolar form and, therefore, exhibiting less numerical error within plasma regions
in which ambipolar diffusion is significant.

The proposed recast of the electron and ion transport equations is advantaged over previous formulations by being compati-
ble with the boundary conditions commonly used in plasmadynamics. In a previous paper, it was found necessary to reformulate
the boundary conditions at the anode in order to ensure that Gauss’s law would be satisfied within the anode sheath should the
potential equation be obtained from Ohm’s law. Such is not necessary with the present set of equations: exactly the same
boundary conditions that are commonly used can be specified and no problem is encountered either at the anode, the cathode,
or at the surface of dielectrics.

Because the proposed equations are not intrinsically linked to specific discretization or integration schemes and exhibit
substantial advantages with no apparent disadvantage, they are generally recommended as a substitute to the current fluid models
in which the electric field is obtained from Gauss’s law as long as the plasma remains weakly-ionized and unmagnetized.
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A. Proof of Enforcement of Gauss’s Law

It may be argued that, because the electric field is obtained from a potential equation based on Ohm’s law rather than Gauss’s
law, Gauss’s law is not necessarily satisfied when solving the set of governing equations proposed in this paper. However,
it is emphasized that the proposed approach necessarily guarantees that Gauss’s law is satisfied through the addition ofsome
appropriate source terms to the positive ion transport equation. This can be better understood by considering a simple 1D
problem with no negative ions, no temperature gradients, zero neutrals velocity, and only one type of positive ion. Then, the
proposed ion and electron transport equations (35) simplify to:
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and the potential equation based on Ohm’s law (34) simplifiesto:
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wheree is the elementary charge, where the subscript “e” refers theelectron species and the subscript “i” to the positive ion
species, whereRe, Ri, R� are the residuals that we seek to minimize through an iterative method, and where the diffusion
coefficients correspond to:

Di �
�ikBTi

e
and De �

�ekBTe

e
(A.4)
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Multiply Eq. (A.3) by .�iNi/=� , add to (A.2), and simplify:
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Substract the latter from Eq. (A.1), simplify noting thatE D �@�=@x and thatWi D We because no net charge can be created
or destroyed through the chemical reactions:
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Regroup the 5th term with the 7th term on the RHS noting that� D e�iNi C e�eNe:
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Note that the currentJ corresponds to:
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Substitute the latter in the former:
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But, note that the following holds:
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Isolate the second term on the RHS of the latter and substitute within the 8th term on the RHS of the former:

Ri �
�iNi

�
R� � Re D E

@

@x
.�iNi/ C �iNi

e

�0

.Ni � Ne/ C �E
@

@x

�

�eNe

�

�

�
�iNi

�

@

@x
.�E/

� eDi

@Ni

@x

@

@x

�

�eNe

�

�

C
@

@x

�

e�eNeDi

�

@Ni

@x

�

�
e�eNe

�

@

@x

�

Di

@Ni

@x

�

� eDe

@Ne

@x

@

@x

�

�iNi

�

�

C
@

@x

�

e�iNiDe

�

@Ne

@x

�

�
e�iNi

�

@

@x

�

De

@Ne

@x

�

(A.11)

After expanding the second term on the second line and the second term on the third line, and simplifying, we get:
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Expand the last term on the RHS:
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Expand the 3rd term on the RHS as follows:
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Substitute the latter in the former, and simplify noting that � D e.�iNi C �eNe/:

Ri �
�iNi

�
R� � Re D �iNi

�
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@x

�

(A.15)

Note that when the set of equations (A.1)–(A.3) is converged, the residuals become zero:Ri ! 0, Re ! 0, andR� ! 0. Then,
from Eq. (A.15), this entails that solving the system (A.1)–(A.3) necessarily results in Gauss’s law being satisfied. Because
Gauss’s law is satisfied, it can be easily shown that the solution of the modified ion transport equation (A.1) necessarilyentails
the solution of the standard ion transport equation. It can be further shown that this ensures the solution of the standard electron
transport equation because the solved potential equation based on Ohm’s law corresponds to the difference between the standard
ion and electron transport equations. Thus, it is clear thatEq. (A.1) does not automatically follow from Equations (A.2) and
(A.3), and therefore the system (A.1)–(A.3) is complete: there are 3 independent equations for 3 unknowns.

Although the proof presented above applies to a three-component onedimensional plasma, it can also be shown by following
similar steps that the proposed approach provides enough equations for the number of unknowns and guarantees that Gauss’s law
is satisfied (either in quasi-neutral or non-neutral regions) for multicomponent and multidimensional weakly-ionized plasmas.
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