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Electron and lon Transport Equationsin
Computational Weakly-1onized Plasmadynamics

Bernard Pareiit Sergey O. Machergtand Mikhail N. Shneidér

A new set of ion and electron transport equations is proptsaimulate steady or unsteady
guasi-neutral or non-neutral multicomponent weakly-Zexdiplasmas through the drift-diffusion
approximation. The proposed set of equations is advantagedthe conventional one by be-
ing considerably less stiff in quasi-neutral regions beeaitican be integrated in conjunction
with a potential equation based on Ohm’s law rather than &alsv. The present approach is
advantaged over previous attempts at recasting the systdreihg applicable to plasmas with
several types of positive ions and negative ions and by rptiri@g changes to the boundary
conditions. Several test cases of plasmas enclosed by tliegeand of glow discharges between
electrodes show that the proposed equations yield the salumios as the standard equations
but require 10 to 100 times fewer iterations to reach coremerg whenever a quasi-neutral re-
gion forms. Further, several grid convergence studiesatdithat the present approach exhibits
a higher resolution (and hence requires fewer nodes to r@@iven level of accuracy) when
ambipolar diffusion is present. Because the proposed ensaére not intrinsically linked to
specific discretization or integration schemes and exhillistantial advantages with no appar-
ent disadvantage, they are generally recommended as édstgbtst the fluid models in which
the electric field is obtained from Gauss’s law as long as henpa remains weakly-ionized and
unmagnetized.

1. Introduction

EAKLY-IONIZED plasmas have recently been the focus of iraed attention as a means to improve the capabilities

of aircraft. Possible applications of weakly-ionized jpie&s that are currently under investigation include (and are
not limited to) boundary layer control on fixed and rotatinopgs using DBD plasma actuators, power generation on board
high-speed airbreathing vehicles through MHD generatarthrust production using MHD accelerators. Numericalidan
tions of weakly-ionized airflow for aerospace applicatibiase so far been accomplished mostly using a fluid modeltfiee.
drift-diffusion approximation) [1, 2, 3, 4] because mor&dived physical models based on kinetic theory require &sige
computational resources at the relatively high densitie®entered in plasma aerodynamics, although some progresig
made in this area [5].

When discretized using finite-difference stencils, thé-diiffusion model in which the potential equation is olotadl from
Gauss's law is well known to be particularly stiff. (A stiffstem of equations here denotes a system for which the attegr
steplength is forced to be excessively small in relatiorhtodmoothness of the exact solution.) The stiffness becpartis-
ularly severe in the quasi-neutral regions where the pesitharge density approaches closely the negative changitylelo
relieve the stiffness of the system, a strategy was propasazhtly in which the potential equation is obtained fromCh
law rather than Gauss'’s law (see Ref. [6] and also Ref. [)efisure that Gauss’s law is satisfied in the non-neutradnegi
some source terms are added to the ion conservation equéti@oing so, it was possible to specify a considerably large
integration steplength, and this lead to a hundredfoldetdn in the number of iterations to reach convergence werrtbe
plasma had some regions that were quasi-neutral. Furtheasi demonstrated that such a gain in convergence acieferat
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could be obtained with no loss in accuracy: either on coargme meshes, the solution obtained with a potential based on
Ohm’s law had a numerical error that was not greater thantieeobtained with a potential based on Gauss'’s law.

Nonetheless, the recast set of equations presented in Blafogs have one drawback over the conventional set when
simulating weakly-ionized plasmas. Namely, the boundanddion at the anode needs to be redefined or Gauss’s landwoul
not be satisfied within the anode sheath close to the surfdue.is problematic because the redefined boundary condgio
approximate and it is uncertain whether it would remaindralithe general case. Further, the approach presented ifi@Ref
is limited to a three-component plasma (one type of positis, electrons, and neutrals) in one dimension, and itislear
how it could be extended to multidimensional and multicomgrtt plasmas (plasmas with several types of positive iods an
negative ions).

The goal of this paper is to build upon the ideas presentein[B] and to derive a new set of electron and ion transport
equations that is more computationally efficient than theveational set and that is generally applicable to mult&lisional
and multicomponent weakly-ionized plasma flows. In additim contrast to the approach shown in [6], we aim to find a
formulation that can be used without modifying the boundanyditions at the electrodes.

This paper is divided as follows: first, we provide a desaiptof the physical model suitable to multicomponent and
multidimensional weakly-ionized plasmas; this is follahgy the outline of the “conventional governing equation.( the
set of equations that is normally used to simulate weakiyzied plasmas using a fluid model), and then by the proposed
recast of the electron and ion equations; a short summahgeis given of the discretization and integration schemed use
herein; finally, some test cases are presented typical dfly«anized plasmas encountered in plasma aerodynanicsthe
performance of the proposed set of equations is assesseahria tf the number of iterations needed to reach convergernte
of the resolution of the converged solution.

2. Physical Model

In this section, a short outline is given of the fluid modelttisagenerally used to simulate weakly-ionized plasmas, (i.e
plasmas with an ionization fraction less than 0.001 or s@ymm@only referred to as the “drift-diffusion model” the piged
model considered is widely used to simulate weakly-ionzledmas not only for steady cases but also for unsteady tases
which the displacement current is not negligible (see fetance Refs. [8, 9, 10, 11, 12, 13, 14, 15]).

Conservation of mass entails the following transport eiqudbr each charged species:
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with N, being the number density;* the velocity (including drift and diffusion), an@&; the chemical source terms (due to
Townsend ionization, dissociative recombination, etadhefkth species. When the plasma is weakly-ionized, it can be show
[16] that the momentum equation collapses to:
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with V" the neutrals velocity and with. the sign of the chargeK1 for positive ions and-1 for negative ions and electrons),
i the mobility, C, the charge-te for electrons e for singly-charged positive ions;2e for doubly-charged negative ions,
etc, withe the elementary charge). Equation (2) depends on the ppréasureP, which can be found from the density and
the temperature using the ideal gas law:

P = NikgTy 3)

wherek; is the Boltzmann constant arfgl is the temperature of specigs As well, Eq. (2) depends on the electric fidi]

which can be found from Gauss’s law:
E;, 1 &
> o > CiNy 4)
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whereg, is the permittivity of free space and refers to the number of charged species. To close the setuafiegs, we
assume that the curl of the electric field is zero, hence hegii the existence of an electric field potential
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with ¢ the potential function. The latter holds true as long as tagmetic field is negligible or does not vary in time, which is a
fair assumption for many weakly-ionized plasmas in the abs®f an externally-applied time-varying magnetic fielddnese
the current due to the induced magnetic field is typicallyeosf magnitude less than the current due to the electrit fiel

An important physical parameter that needs to be extracted the physical model is the current density. We can obtain
the current density conservation equation by multiplylmefith species transport Eg. (1), by its respective ché@kgesumming
over all species, substituting the species velocity from(Ey and noting that no net charge can be created or desttby@ugh
the chemical reactions. Then, the following equation wdaddbtained [16]:

3pe
Z T = (6)

where the conductivity, the net charge density, and theeatidensity due to drift and diffusion are defined as:

ns
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It is emphasized thal is here defined as the current density due to drift and ddfusnly, and does not include the displace-
ment current. However, this does not prevent the equatiams being used in a situation where the displacement cuisent
significant (such as for a RF discharge for instance). Fdn sutase, the charged densities and the potential are othizsirey
exactly the same equations as above witheing limited to the current due to drift and diffusion. Thieglacement current
needs to be added td only when calculating the total current and the phase mlatbetween the applied voltage and the
discharge current needed for the external circuit.

The fluid model outlined above is hence valid both in the nentral sheaths and the quasi-neutral regions of weakly-
ionized plasmas, and can predict accurately physical phena such as ambipolar diffusion, ambipolar drift, cathsltEaths,
dielectric sheaths, unsteady effects in which the dispheece current is significant, etc. Nonetheless, it is notatlttie physical
model considered herein makes several assumptions: (@adkea is not subject to an external magnetic field and thecied
magnetic field is assumed negligible, (ii) the drag force ttueollisions between charged species is negligible coethty
the one originating from collisions between charged sygemiwl neutrals, and (iii) the forces due to inertia changassemed
small compared to the forces due to collisions. The matherai&xpressions for the latter forces as well as the juatifin for
neglecting them when simulating weakly-ionized plasmashzafound in Ref. [16].

Finally it is cautioned that, because the electric field imoted from Gauss’s law, the physical model outlined in $leistion
can not be used to tackle problems where the electric fieldigraficant function of a time-varying magnetic field, suchim
inductively coupled plasmas or microwave induced plashmthose cases, the electric field would cease to be a patéatih
and would need to be determined through the full or simplifiteckwell equations. More details on when Gauss'’s law can and
can not be used to determine the electric field can be founeis.[RL7, 18].

3. Conventional Governing Equations

In this section, we give a short outline of the set of différ@requations that are commonly used to solve the physicaleh
outlined in the previous section using finite-differencemoels (which we denote as the “conventional governing égpus).

The conventional governing equations correspond to thtisal for each charged species (including positive iongatiee
ions and electrons) of the transport equation outlined in(Egwith the velocity taken from Eq. (2) and the partial pa®

obtained from Eg. (3)
piks Ty ON 2,9 Micke Ny 0T,
=W, 10
( ICe] 8x,-) k+;8x,- ICcl o, (10)
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The electric field appearing in the convection terms is alataiby solving the potential equation based on Gauss's lawghw
can be obtained by substituting Eq. (5) into Eq. (4):

Z—¢ :——ZCka (11)

€
0 k=1

from which the electric field components can be found using(&qg
The transport equations for the charged species can betmwiri the following matrix form to ease their discretizatiand

integration:
> ou
R= Z—JFZa (A;U) — Z ( 8x)_S (12)

whereR is the residual vector that we seek to minimize and Whereﬂlmermnatrlces correspond to:
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When discretized using finite difference stencils, the seqaatlons presented in this section and denoted as “ctioveli is
well-known to be particularly stiff within quasi-neutr&gions. This is attributed to the potential equation base@auss’s law
being overly sensitive to small errors in the charged spgedémsities when the plasma becomes quasi-neutral [6].nTdes
it necessary to limit the time step to very small values whtagrating the electron and ion transport equations, tiaguh
hundreds of thousands of iterations necessary to reaalysstate.

4. Recast of the Electron and lon Transport Equations

As was demonstrated in Refs. [7, 6], the stiffness of theesgstan be alleviated by rewriting the equations such that the
electric field potential is not obtained from Gauss’s law, tawher from Ohm'’s law. In so-doing, the potential equai®not
overly sensitive to small errors in the densities, and thematational effort can be reduced one hundred fold or everemo
The methods presented in Refs. [7] and [6] are however nettljrapplicable to multidimensional multicomponent phas.

In this section, we propose a new set of transport equatmmthé charged species that, when solved in conjunction avith
potential equation based on Ohm'’s law, yields the same aressvilhe conventional governing equations outlined in 8ai
while requiring a fraction of the computational effort fdapmas involving quasi-neutral regions.

4.1. Positively-Charged Species

When the electric field is obtained from Ohm'’s law rather tham Gauss’s law, it is necessary to add some source terms to
the positive ion transport equations to ensure that Galasg's satisfied. This can be accomplished as follows. Frdistitute
the velocity in Eq. (2) into Eq. (1), and simplify noting that= 1 andCy, is positive for the positive ions:

8Nk ’ 0 Mk 8Pk
0% NV + N By — 2206 15
o1 +;8xi(k’+ i |Ck|8x,») . (15)

The source terms that must be added to ensure that Gausssdatisfied can be obtained by multiplying Gauss's law Ej. (4
by ux Ny and rearranging:
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Then, we add the latter to the former to obtain:

3 ns
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And we note that the following statement holds:
S L
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Substitute the latter in the former and rearrange:
3 ns
W > e (Meve - ) + gE 0N = Wi G, 19)

Rewrite the partial pressure term using the ideal gasiHaw= N, ks T}, expand the pressure derivatives, and rearrange:

aNk > Vo > d //kaBTk aNk
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The latter is the proposed transport equation for the pesitins. It differs from the standard form (Eq. (1)) by indlugisome
source terms to ensure that Gauss’s law is satisfied whemtragiens are integrated along with a potential equatioedas
Ohm’s law. However, this modification to the transport etqrat reduces their resolution capabilities with the consege that
significantly more nodes are needed to capture sheaths asdmgutral regions.

4.2. Negatively-Charged Species

One approach that has been shown successful in increagimggblution of the system of equations is to rewrite thetedac
transport equation in “ambipolar form” [6]. A transport edion can be written in “ambipolar form” by extracting frommet
convection terms the ambipolar diffusion terms [19]. Efifiealy, this increases the computational efficiency wheadnating
the system because the transport equations for the chapgetts do not depend as much on the potential. It is here found
necessary to rewrite in ambipolar form not only the electransport equation, but also the transport equations éonégative
ions. In doing so, the proposed system of equations (in witietpotential is obtained from Ohm'’s law) exhibits a resolut
as high (or even exceeding) the one of the conventional sfjudtions in which the potential is obtained from Gaussis la
The ambipolar form outlined herein differs from the one imettl in Ref. [19] by being applicable to a non-neutral plasma
and from the one outlined in Ref. [6] by being applicable to aittomponent plasma. As well, the recast proposed in this
section fixes a major problem that was encountered with tH@gotar form in a previous paper: that is, the method progose
herein can be integrated successfully within the negatiebbrged plasma region near the anode without requirireyvaite
of the anode boundary conditions. This is here accomplilyedkfining slightly differently the so-called “ambipoldeetric
field”. In the previous papers, the ambipolar electric fiembwlefined as the component of the electric field that is resipien
for cancelling out the component of the current originafiragn the mass diffusion of the charged species. In this paper
rather define the ambipolar electric field as the componetiieElectric field that cancels out all components of theesurr
except due to drift:

1
o

After substituting the current from Eq. (9) and using thealdgas lawP, = N, kg T,, it can be shown that:

= Sk Ty ON, = s,,u,kBN aT = C, N
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wherek; is the Boltzmann constant aff|l is the temperature of speciesHaving defined the ambipolar electric field, we how
proceed to recast the negatively-charged species in afabifoom. This can be done by first substituting the veloaityeiq.
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(2) into the species transport equation Eqg. (1) while natiivags, = —1 when the species is negatively-charged:
NV — i E; — = Wi 23
Za k( TR 8xi) ‘ (23)
Then we use the relationshify = N, kT, expand the partial derivatives, and rewrite:
aNk d > //kaBTk 8Nk ,LkaBNk aTk
N V" — i N, E = 24
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The latter can be recast in ambipolar form without loss ofegality by adding and subtracting’ to the electric field:
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After substitutingE” from Eq. (22) in the third term on the LHS and rearranging, Wwaim:
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Split the second-last term on the LHS in two and simplify:
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Combine the last 2 terms on the LHS:
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But recall from Eq. (21) thaE; — E! = J;/o. After substituting the latter in the above and splitting tterivative involving
the current into two terms, we obtain:
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But note that, after substituting Eq. (8) into Eq. (6), theetigence of the current can be written as:

Z =L (30)

Then, after substituting the latter in the former and regiog similar terms together, the following is obtained:
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The latter is the proposed “ambipolar form” of the transmoygation for the negatively-charged species. It must bd nee
only for the electrons but for all negative ions. It is emphead that the recast Eq. (31) is obtained from the physicaleho
outlined in Section 2 without making any assumption.

5. Proposed Governing Equations

We can combine the transport equation for the positivelgrgéd species, Eq. (20) and the transport equation for theginely-
charged species, Eq. (31) into a single equation:

0 — B |Crl i Ni E)Nk < Bi G Ne aN > . C,N,
9 P Tkl e "Ny) A
Z ax; V; " + Z ax; Z c !
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wheref™ = 1 andB~ = 0 for the positively-charged species afil = 0 andf~ = 1 for the negatively-charged species. We
can expresg® in a single expression as follows:

BE = max0, +s;) (33)

The current density is obtained from Eq. (9) while the eledteld is obtained from the potential equation based on GHanv.
The potential based on Ohm'’s law can be obtained by substtéigs. (5), (9) and (8) in the current continuity (Eq. (6)da

rearranging:
h Yo (ogt) = Y (3 @
—_— S
= 0x; 8x 0x; ]"uk

k=1

To simplify the discretization and integration procesﬂesponvenlentto rewrite Eq. (32) in general matrix fornfaows:

.9 3
Z—+Za (AU)+ZG _(BU)—Zax_(Kag)—S (35)

whereR is the residual vector that we seek to minimize and where ttier onatrices correspond to:
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Itis emphasized that the transport equations proposed.i(8ijjalong with the potential equation based on Ohm’s |atkrod

in Eq. (34) are obtained from the physical model outlinedést®n 2without introducing new assumptions or simplifications
As such, they always guarantee that Gauss’s law is satisfigliald the same solution as the conventional governingtojs
shown previously in Section 3, in which the potential equats based on Gauss’s law (see proof in the Appendix denadimsjr
how the proposed set of equations ensures the solution afS&daw). This is true not only for steady-state cases st fir
unsteady cases in which the displacement current becograficgint such as when simulating RF discharges for instésese
discussion on this point just below Eq. (9)). However, beeahe potential equation is based on Ohm’s law instead o$€Zau
law, the proposed set of governing equations is advantagbdibg easier to integrate in plasma regions that are queadrial.
As will be shown in the Test Cases section below, this resnlgsfourtyfold (or more) reduction in computational efféot
some typical flowfields, while not compromising on the accyraf the converged solution.

6. Boundary Conditions

The set of governing equations based on Ohm'’s law propos#dsipaper can be used with the same boundary conditions
normally used when solving the conventional set of equati@msed on Gauss'’s law. For this purpose, it is conveniergftoed

n as a coordinate that is perpendicular to the boundary sugad that points away from the surface. Then, when the Eectr
field points towards the surface (or when the surface is acliét) the electron and ion number densities are set atitiace

as follows:

BN,V
( a+ ) _0 and N.—o0 and N, = lZNkMkﬂZf for E,<0 (40)
n

€ k=1

with y being the secondary emission coefficient, the subscripdégibting the electron species, the subscrgtdenoting the
negative ion species, and the subscript ‘tlenoting the positive ion species. On the other hand, wheretectric field points
away from the surface, the following boundary conditioresiarposed on the charged species densities:

ON_V) _ L DNV

N, =0 and
" an an

=0 for E,>0 (42)
When the surface is an electrode, the potential is fixed teeadisfined value. When the surface is a dielectric, the pialen
must be such that the current perpendicular to the dieteistrzero. A boundary condition for the potential on a digiect
surface can thus be obtained by first setting the current if®do zero and then noting th&t, = —d¢/dn:

»_1 2 s 42)

For certain flowfields, it may be necessary to underrelax tiamge of the electron density at the boundary and to determin
the electric fieldE, using the minmod of the electric fields at the two interfadesest to the boundary (as done in Ref. [6]).
However, contrarily to the approach shown in Ref. [6], it &t necessary to modify the boundary conditions at the anwode i



B. Parent, S. O. Macheret, M. N. Shneider, “Electron and lean$port Equations in Computational Weakly-lonized Plagymamics”,
Journal of Computational Physics 259 (2014), pp. 51-69.

order to ensure that Gauss’s law is satisfied within the asbdath. Rather, we here use the same boundary conditiotefor
proposed governing equations (in which the potential isioled from Ohm'’s law) as for the conventional governing ¢igna

(in which the potential is obtained from Gauss’s law). Tlisattributed to an additional transformation of the equmsjo
introduced between Eg. (29) and Eq. (31): because of therdiit definition of the ambipolar electric field, some spatia
derivatives within the negatively-charged species trartsgmuations can be recast in the form of a temporal devizaly using
the current continuity equation. This additional transfation reduces the dependence of the transport equatidhs efectric
field, resulting in a higher resolution within the anode shea

7. Discretization and Integration

The discretization of the potential equation (see Eq. (84)9s not pose any particular problem and is here accomglishe
using centered second-order accurate stencils for theakpativatives and using first-order backward stencilstfar time
derivatives. The potential equation is advanced in psémeaising an approximate factorization implicit algoritasioutlined

in Refs. [16, 19], with the pseudotime step being fixed to sstamt for all nodes. That is, the pseudotime step for all adgle
fixed to the minimum throughout the domain found from:

2 AX; .
L.- 3'n ( al ) for the potential based on Ohm'’s law
1

mi
A, = Ao to (43)
L.-min(Ax;) for the potential based on Gauss’s law

i=1

with o, a user-defined constant typically set to 0.003 S/mna characteristic length that is varied depending on thelenob
(typically set to some average distance between the etigjolt is found that faster convergence can be attained wdrging
the characteristic length, cyclically from iteration to iteration, such ds = 1, 0.1, 10, 1,0.1 m, etc. Exactly howl is varied
will be specified case by case in the Test Cases section below.

The discretization of the charged species transport empafsee Eq. (35)) is accomplished by splitting the dekieatalong
each dimension and discretizing the so-obtained one-diioeal derivatives using one-dimensional stencils (iiethsional
splitting). The one-dimensional stencils used herein liertarious types of derivatives are taken from Ref. [6]. [viag
the discretized charged species transport equations panxamate factorization algorithm is used along with a Blamplicit
algorithm in which the convection, diffusion and sourcenterare all linearized and hence treated in an implicit maniRer
this purpose, a pseudotime derivative is added to the &ftdfside of the equations. It is noted that the pseudotieeistset
to the same value over all nodes, and corresponds to the mmimjpseudotime step within the domain found from:

Aty = CFL m3in( A% ) (44)
N = .
N i=1 \ des + pe | E; — Ej|

with u. the electron mobilitya,.; @ constant typically set to 300 m/s, and CFL a constant vdr@ed case to case to achieve
fastest convergence.

TABLE 1.
3-species 3-reactions air plasma chemical model withreledteam ionization.

No. Reaction Rate Coefficient References
1 e +Ar - Art +e +e exp(—0.0105031 - In* E* — 2.40983 - 1075 - In*°E*) cmP/s [20, 17, 219
2 Air — e + Airt 1.84-10'7 - Qp 1/s [22]
3 e + Airt — Air 2.24-1077 - (300/ T,)°> + 0.4- 1077 - (300/ T.)*7 cm?/s [23F

@ Notation and unitsT, is in Kelvin; T is in Kelvin; E* is the reduced electric fieldZ¢ = |E|/N) in units of V:\m?; Q; is the ratio in
Watts between the electron beam power per unit voldmend the total number density of the plasMdQ; = 0,/N).

® The rate coefficient approximates the Townsend ionizatesrgiven in [20] and in [17, p. 56] with the drift velocityken from [21,
Ch. 21]; The rate coefficient can be used in the rahged—° < E* < 240 - 1072 V - m? with a relative error on the ionization rate not
exceeding 20%.

¢ The rate coefficient approximates the dissociative recoatlin reactionse+N; — N+Nand € + 0O — O+ O assuming a N:OF
ratio of 4:1.
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TABLE 2.
6-species 15-reactions air plasma chemical model witlrelebeam ionizatiof?

No. Reaction Rate Coefficient Refs.

la € +N, >N +e +e exp(—0.0105809 - I E* — 2.40411 - 1077° - In* E*) cm?/s [21, 20, 17
1b e +0,-0 +e +e exp(—0.0102785 - IN*E* —2.42260 - 10~7° - In** E*) cmi/s [21, 20,17
2a e +0f -0, 2.0-1077-(300/T.)°7 cnm?/s [24]

2b e +Nf - N, 2.8-1077 - (300/ T.)%% cnmP/s [23]

3a O +Nf >0+ N, 2.0-1077-(300/T)%° cmP/s [23]

3b O +0 - 0,+0, 2.0- 1077 - (300/T)%5 cni/s [23]

4a O +Nf +N,— 0O, + N, + N, 2.0-1072°-(300/T)° cmP/s [23]

4b QO +0f +N;, >0, +0,+ N, 2.0-10725-(300/T)%° cf/s [23]

4c O +Nf+0,-0,+N,+0, 2.0-10725 . (300/T)>° cnf/s [23]

4d O +0f+0,-0,+0,+ 0, 2.0- 1072 . (300/ T)>° crf/s [23]

5a €+0,+0,>0; +0, L4-104°~GOO/TQ~exp(—am/73~exp(ﬂﬁ%$ﬂ3>cnPB [23]

5b € +0,+N, >0 +N, 1.07 107" - (300/T.)” - exp(=70/ T) - exp( 209012 ) cref s [23]

6 0 +0, e +0,+0, 8.6-10719.exp(—6030/T) - (1 — exp(—1570/T)) cm’/s [25, Ch. 2]
7a O—>e +0/ 2.0-10"7-Q; 1is [26]

7b N, — e + Nf 1.8-10'7 . Qr 1/s [26]

2 The species consist offN Of , O, &7, O, N,.

® Notation and units* is the reduced effective electric field{ = | E|/N) in units of V-m?; T, is the electron temperature in Kelvif;
is the neutrals temperature in Kelvi@; is the ratio in Watts between the electron beam power pewohitne 0, and the total number
density of the plasm&/’ (Q} = Q,/N).

¢ The rate coefficient approximates the Townsend ionizatitesrgiven in [20] and in [17, p. 56] with the drift velocityken from [21,
Ch. 21]; The rate coefficient for Nionization can be used in the range1072° < E* < 187 - 1072° V . m? with a relative error on the
ionization rate not exceeding 17%; The rate coefficient foiddization is obtained from the rate for air and the one feradsuming a
N,:O, ratio of 4:1.

4 The reaction rates for the dissociative recombinationtieas e + O — O+ 0 and € +N; — N+ N are here rewritten for simplicity
toe 4+ O — O, and e + N — N, (to avoid the handling of the additional O and N species).

In order to make the pseudotime integration stable it is fougcessary not to fully linearize the electron impact iatian
(i.e. Townsend ionization) terms. Rather, we here propgsetéal linearization of the Townsend ionization termg fhastable
and that results in faster convergence. This is accompliblidirst rewriting the electron impact source terms as atfanof
current (instead of electric field), and then linearizinglenthe condition of quasi-constant current. For this psepeve can
rewrite the reduced electric field as:

Bl E]
= _ B 45
N = (45)
After obtaining the electric field as a function of the cutrgom Eq. (9) and substituting, it follows thét is equal to:
g—l J—l—is 9P iczvv" (46)
i — N i P KMk axi P kiVEV;

Then note that the electron impact ionization rates can liteewras follows (see reaction 1 in Table 1 and reactions tlalan
in Table 2):

kg = exp(—6, - IPE* — 6, -In*E™) (47)
with 6, and6, some constants. Substitule = |E|/N = |&|/o in the latter and take the derivative with respectton both
sides keeping constant (a constajtessentially entails a constant current density bec&udspends mostly on the current
densityJ within the cathode sheath where the Townsend ionizaticestalace):

i 2 4
(ake) = kq (ﬁ InE* + —692In45E*) (48)
do /., o o

10



B. Parent, S. O. Macheret, M. N. Shneider, “Electron and lean$port Equations in Computational Weakly-lonized Plagymamics”,
Journal of Computational Physics 259 (2014), pp. 51-69.

But recall that the conductivity is proportional to the nuenldensity of each species (Eq. (7)). Assuming constantlitiesj

it follows that: " 9 9%k 26 460
o o ei ! * 2 Er
(aNk)s (8Nk)éx (80 )s |Cr| px ( pe n + > n ) (49)

For instance, consider a plasma composed 9f\, N;-, Of, O;, and electrons. The Townsend ionization rajgfor the
reaction € + N, — NJ + e + e can be approximated by Eq. (47) with = 0.0105809 andf, = 2.40411 x 107>, The
U vector in this case would be limited to the charged specidsaanuld hence correspond o = [N02+ NN2+ No; N¢|". The
contributions to the source term Jacobin= 9.5 /dU originating from reaction 1a would then amount to:

0 0 0 0
N N akla N N akla N N akla N N akla
M\ Nt "\ AN 7\ Ny e\ N, ),
M. — 2 /& 2 /& £ (50)
ta 0 0 0 0

N N, [ s N N, [ s N N, [ s NN, [ s

M\ AN+ M\ ON 7\ Ny e\ N, ),
L 2 £ 2 £ & -
where the variougdk,./IN, ) terms are taken from Eq. (49). The source term JacaMiancludes the contributions from all
chemical reactions as well as the contribution from thezestuurce term added to the positively-charged transpo#dtims to

ensure that Gauss’s law is satisfied:
M = Mg+M1a+ M1b+M2a+“' (51)

with M, including only the negative source term needed to enforeesSslaw:

M M ns
[ 9]1.1 [ 9]1.ns _lﬂjﬂr Z max(O, Cm) N, ifr=k
Mg = .. with [Mg]lﬁk = 610 m=1 (52)
[Mg]n Co [M] _E_ﬂ:r//LrNr max(0, Cy) otherwise
s» ns.is o

It is emphasized that only the electron-impact reactiordiaearized as in Eq. (50). The other chemical reactionsad@ose
any problem and are linearized in the standard manner bygdke partial derivative of the chemical source term wigpeet
to a particular number density (keeping the other numbesities constant).

One iteration consists of first advancing in pseudotime impbed form the transport equations for the number densities
while keeping the potential constant. This is followed byrBubiterations in pseudotime of the potential equaticpkey
the number densities constant. The process is repeatedgaddhe residual of all charged species transport equsadiaeh of
the potential equation is above some user-specified coemeeghresholds. When solving certain sheath problenssfatind
necessary to perform some pseudotime subiterations ofdtemfial because the latter is more sensitive to errorsnaiimg
from approximate factorization (which can be reduced tgtosubiterations).

It is deemed sometimes necessary to limit the electric fisétluo compute the Townsend ionization source terms in order
to prevent the solution to diverge towards aphysical statésgh CFL numbers. The approach recommended is to limit the
electric field such that the resulting current density (prtipnal to the product of the electric field and the condutt) does
not exceed a certain user-specified value:

o 1 Z(mm(Jmax, MaX(—Jmae mmmod((UE,-)X,._l/za(UE:')X,-+1/2)))) (53)

N max(ox,-,l/zﬁxm/z)

i=1

whereE™* is the reduced electric field used to determine the Towns®riddtion reaction rate®/ is the total number density of
the plasma (including neutrals), arig, is a user-specified maximum current which is typically settiout 3 times the expected
maximum current density within the domain. Also, the minnfimaiction returns the argument with the lowest magnitudd, an
X; refersto the grid index along thi¢h dimension (i.eX; —1/2 refers to the interface just ahead of the node under coradidar
along theith dimension). It is emphasized that such a limitation ofehetric field is only performed when computing the
Townsend ionization terms, and does not affect the condesgleition as long as the user-specifigg, is higher thars | E| at
any location within the converged solution.

11
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TABLE 3.
lon and electron mobilities in dry &ir.

Charged species Mobility, mvV—.s™* Reference
Airt N='-min(0.84-10% . 7705, 2.35.10'2 - (E*)™"%) [27]°
NF N='-min(0.75-10% - T=%%, 2.03-10'% - (E*)™"?) [27]
oF N~'-min(1.18 - 10% - T7%5, 3.61-10'2- (E*)™*) [27]
05 N='-min(0.97-10% - T7°3, 3.56- 10" - (E*)™"") [28]
e N~'-3.74-10" - exp(33.5 - (In T,)~*?) [21, Ch. 21}

2 Notation and units:T, is in Kelvin; T is in Kelvin; N is the total number density of the plasma in 1/nk* is the reduced effective
electric field £* = |E|/N) in units of V.m?.

® The “air ion” mobility is obtained from the Nand G ion mobilities assuming a NO; ratio of 4:1.

¢ The expression approximates the data given in Chapter 2&0f{RL]; The equation can be used in the range0 K < 7, < 57900 K
with a relative error on the mobility not exceeding 20%. la tange287 K < T, < 1000 K, the relative error is less than 30%.

10" 4
£
= 10°
2
‘D
c
()
o 10" : .
E Proposed governing equations
E Conventional governing equations
1044 7
10°4 4 |

0 0.001 0.002
X, m

FIGURE 1. Number density profiles for the 1D multicomponent tesedatween two dielectrics; the grid is composed of 200 egsathced
nodes for both the proposed and conventional governingtiemsa

8. Test Cases

We now consider several test cases to assess the perfornfahegroposed governing equations. Specifically, becquasi-
neutral regions are particularly difficult to solve, emphkds put on assessing the gains in convergence accelematien
using the proposed set of equations for some plasma flow tieédsnclude quasi-neutral regions. As well, because tlresga

in convergence acceleration may be accompanied by a logsolution, some emphasis is put on determining whether the
proposed transport equations achieve as high a resolwitimeaconventional equations for some key plasma problerns. T
performance is first assessed for a multicomponent plasroldiing several positive ion species and some negativedenies

as well) in 1D. This is followed by a two-dimensional testeas

8.1. 1D Multicomponent Plasma

Consider first an electron-beam ionized multicomponenpkisma in 1D composed of;N O, O;, e, N, and Q. The
electron temperature is fixed to 20,000 K, theMimber density td.93 x 10** m~3, the G, number density td.83 x 10>> m~3,
and the mobilities of the various charged species are taken Table 3. For simplicity, the chemical reactions are tédi
to those listed in Table 2 and do not involve dissociated isgaar excited species (as in Ref. [5] for instance). Addirayen

12
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(a) Potential (b) Current density (proposed eqs.)

Conventional governing equations

1 — — — - Proposed governing equations

Exact solution

0 0.001 0.002 0.002 0 0.001 0.002 0.002
X, M X, m

FIGURE 2. Potential and current density components for the 1D wartponent test case using a mesh of 400 equally-spaced; {ajles
electric field potential with the “exact” solution obtainesing the conventional equations and a mesh of 1600 nodes(wding 1600 nodes,
negligible differences are observed between the proposdd@nventional equations); (b) current density companesing the proposed
equations.
1022‘““‘“““‘“““““““““““““‘
10* 4 3
107 4 3
10" 3
Conventional governing equations
1018 ] /

10" ; 3

10'° Proposed governing equations i

-~

10" 4 3
10"

max. QF density residual, 1/As

0 100000 200000 300000 400000 500000 600000 700000 800000

iteration count

FIGURE 3. Residual history for the 1D multicomponent test case betwtwo dielectrics; the grid is composed of 200 equally spamdes
for both the proposed and conventional governing equatibesCFL number is fixed to 0.5 in both cases.

chemical reactions is not expected to yield significanedéhces for the test case under consideration and wouldlioatethe
physical model unnecessarily. The domain is 1 cm long wigheft and right boundaries set to dielectrics, where thersgary
emission coefficient is set to 0.1. Because the density of the negative ions antt@hs is within the same range as the one of
the positive ions, such a problem serves as a capable testacagaluate the performance of the proposed governingieqaa

in simulating multicomponent plasmas where negative idag an important role. Due to the electron beam power degasit
being set to an appreciable valuel®® W/m?, a quasi-neutral region forms in the middle of the domairoagmanied by an
ambipolar diffusion region near the surfaces (see the nuaresity profiles in Fig. 1). As can be observed from Fig. 2 and
as expected from theoretical considerations, the curneata the negative species cancels out the current due ta#itvp
species and the potential drop in Volts through the ambipbffusion region is in the same order of magnitude as theteda
temperature in electronvolts (heéfe= 20000 K = 1.72 eV). When using a grid composed of 200 equally-spaced nades|
number of 0.5 combined with a length scdlgof 1000 m is found to yield the fastest convergence for boghpttoposed and

13
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TABLE 4.
Relative error assessment in solving the 1D test case atystgate*”

Governing equations Average relative error
1

1

L L
[ 1M o [ 16— e
0

LNref L¢ref 0
100 nodes 200 nodes 400 nodes 100 nodes 200 nodes 400 nodes
Proposed 2.3% 0.56% 0.13% 1.8% 0.47% 0.12%
Conventional 5.4% 1.8% 0.56% 3.7% 1.2% 0.38%

a The “exact” solution is obtained using the proposed goveyeiquations on a grid composed of 1600 equally-spaced nodes
® The domain lengtii. is set to 3 mm, the reference ion number denaityis set tol0'’/m?*, and the reference potential; is set to 100 V.

Dielectric,y = 0.1

T

0.3022]
Air plasma
Céghg(\j/e N, = 2.414 x 10%* m™ Anode
¢:01 N T, = 20000 K =800V 1
y=>=u T = 300K

- 0, = 2 x 106 W/m?

0.3022

" T

= X

FIGURE 4: Problem setup for the two-dimensional glow dischargedase; all dimensions in millimeters.

the conventional governing equations. As attested by tsidwal histories shown in Fig. 3, the use of the proposed mivg
equations results in a substantial fiftyfold decrease inntlmaber of iterations to reach convergence. The slow corvesy

of the conventional governing equations is due to the piatele¢ing obtained from Gauss’s law amplifying the relatreor

of the number densities when the plasma is quasi-neutralRsé. [6] for a more thorough discussion on this point). Such
an error amplification is avoided by obtaining the poterftiain Ohm’s law as is the case when using the proposed gowgrnin
equations, hence resulting in a large decrease in comptirtiegto reach convergence. Further, not only does the peubsst

of equations result in fewer iterations to reach convergebat it does so by exhibiting a higher resolution (a higlesptution
here implies a lower numerical error on a given mesh). Indasautlined in Table 4, a grid convergence study indicdtat t
the relative error is reduced 2-4 times when using the preghest of equations. This is not due to a difference in digatbon
strategies: for both approaches, the same stencils araadistretize the convection, diffusion, and source tefRegher, the
higher resolution of the proposed equations is attributesbime of the convection terms being recast in ambipolangidh
form, hence minimizing the large discretization error ikatssociated to a physical situation where some of thegidffuterms
cancel out the convection terms, as is the case with ambigiftasion.

8.2. 2D Glow Discharge

The second test case consists of a two-dimensional glowwalige in air under strong electron beam ionization with aroamal
current density regime. The air plasma is composed of 3 coens: positive “air” ions, electrons, and neutrals. Théititees
are taken from Table 3 and the chemical reactions are takemTable 1. The domain dimensions and the boundary condition
are as depicted in Fig. 4, and are such that a glow dischakge fdace between the two electrodes with a substantial-quas
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FIGURE 5. lon and electron number density contours for the 2D gloscluirge test case obtained using the proposed equatiors and
345 x 345 mesh.
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FIGURE 6. Potential contours and current density streamlinedi®2D glow discharge test case obtained using the proposedieos and
a345 x 345 mesh.

neutral region near the anode due to the strong e-beam pa@pesited (see the electron and ion density contours in Fig.
5), with most of the potential drop being located near thbad (see Fig. 6). Such serves as a good test case to assess the
performance of the proposed equations when simulating 2floda sheaths and anode sheaths in conjunction with a quasi-
neutral region of substantial size. The characteristigtle,. on which the pseudotime step of the potential equation dipen

is varied cyclically as follows: 0.5 mm, 5 mm, 50 mm, 0.5 mm, Bnetc. Further, to keep the solution within physical boynds

it is found necessary to perform 3 subiterations of the pg@kaquation for each iteration of the charged speciesspari
equations. In Fig. 7, the electron density maximum residsiglotted as a function of the iteration count for both sdts o
governing equations. The CFL number is adjusted in eachstageas to yield the fastest possible convergence: it issiittb
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FIGURE 7. Maximum electron density residual versus the iteratmmt for the 2D glow discharge test case; the mesh is compd$5d« 87
equally spaced nodes for both the proposed and convengjonalning equations; the CFL number is fixed such as to restiite fastest
convergence possible (i.e. the CFL is set initially to 10 &ndhised at a rate of 0.4% each iteration until it react@¥) for the proposed
equations and until it reachd$ for the conventional equations).

10, and then increased at a rate of 0.4% per iteration uméibithes 40 for the conventional equations or 2000 for thegaed
equations. Increasing the CFL number further would eitkadlto slower convergence or to divergence towards aphysica
states. As can be seen from the convergence histories, tyffidrdecrease in the number of iterations is achieved wisémg

the proposed set of equations. Such a large difference iarttwaint of iterations needed to reach convergence is notodae t
different integration strategy used: in both cases, theection, diffusion and source terms are all treated imgyicnd the
Townsend ionization source terms are linearized in the saarener as specified above in Section 7. The slow convergénce o
the conventional equations is rather due to the error amatifin within the potential equation based on Gauss’s |awventing

the CFL number from being raised substantially in quasiti@wuegions. When using the proposed equations in which the
potential is obtained from Ohm'’s law, there is no such ermoplfication and the CFL number can be raised to values 50stime
higher (or more), hence yielding substantial gains in cayece acceleration. It is emphasized that such gains wvecgence
acceleration are not accompanied by a decrease in resolitidact, the use of the proposed equations is found to sorast
resultin anncreasan resolution in regions where ambipolar diffusion playsraportantrole. For instance, a grid convergence
study of the current density contours for the glow dischaegecase under consideration (see Fig. 8) reveals thatdpesed
equations can achieve the same resolution as the convahgigmations using a mesh made of 2-4 times fewer grid pdhats.
this problem, not only does the present approach yield ksnefierms of convergence acceleration, but it also yietdeefits

in terms of resolution of the converged solution, therefesailting in much improved computational efficiency.

When solved using iterative methods such as the pseudotappisg block-implicit algorithm employed herein, glow
discharge problems are well known to be particularly semsib the initial conditions: should the number densitiessiet
initially to values differing too significantly from the cearged solution, divergence towards aphysical states msyee To
determine the sensitivity of the convergence to the ing@iditions for the glow discharge shown herein, the iniglalctron
and the initial ion densities are varied over the rafge N, < 10'®* m—3 and0 < N; < 10'® m=3. Varying the initial number
densities in this manner is found not to result in a subsaholiange in the number of iterations needed for convergeitber
for the conventional or for the proposed governing equation

Nonetheless, further investigation reveals that theah@dnditions can have a substantial impact on the conveegemar-
acteristics for different glow discharge problems. Fotanse, consider the same geometry and same conditionssenfed in
Fig. 4, but with the electron beam power deposited set toaedavith the voltage difference between the anode and thedat
set to 1800 V instead of 800 V. When solving such a case totsiade using a pseudotime iterative approach, the vaiven g
initially to the ion and electron densities are found to etftbe convergence behavior significantly. For the propgseerning
equations, it is deemed necessary to set the initial elecir@dn densities higher théx 10'> m= or the solution continuously
oscillates without converging. For the conventional goimy equations, it is deemed necessary to set the initiatrele or ion
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FIGURE 8. Comparison between the proposed and conventional eqeain the basis of current density contoutd| (n Amps per square
meter) for the glow discharge test case using various grids.

densities lower tham0'® m—2 or the solution diverges towards aphysical states. Intieggdg, the proposed equations do not
converge when the initial densities are set too low but doembibit any convergence problem when the initial densiks
set too high. On the other hand, the standard equationsieiebopposite behaviour by diverging towards aphysicatiest
only when the initial densities are set to too high valuesefd other test cases yield a similar conclusion: althahghuse
of the present approach may affect the range of adequaitd deinsities, such has both advantages and disadvantegyethe
conventional approach and is not a particular source of@wrizecause the range of initial densities is not overlyictiste.

9. Conclusions

A new formulation of the electron and ion transport equatienpresented to simulate steady or unsteady quasi-neutral
non-neutral weakly-ionized multicomponent plasmas intiple dimensions through the drift-diffusion approxinuati The
proposed transport equations differ from the standard bypéging integratable alongside a potential equation basé&dhm'’s
law rather than Gauss’s law. The proposed governing equedire obtained from the standard set without making anygssu
tion or simplification. As such, they yield the same solutwamen the grid is refined sufficiently and can predict the whole
range of phenomena taking place within weakly-ionizedmpks including quasi-neutral effects (ambipolar drift, §vokar
diffusion), non-neutral effects (cathode sheaths, anbeatss, dielectric sheaths), unsteady effects where #padement
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current is significant, etc.

Because the charged species transport equations presemedd can be solved in conjunction with a potential based on
Ohm’s law rather than Gauss’s law, they do not suffer fronywow convergence in quasi-neutral regions. Several sest
(including high current glow discharges and currentleasmlas enclosed by dielectrics) indicate that the propgseebach
typically result in a 10-100 times decrease in computatieffart whenever the plasma includes a quasi-neutral regio
substantial size. Other test cases show that, when no gaeasial region is present, both sets of equations convérgsimilar
rate.

Several grid convergence studies confirm that such gainsnmergence acceleration are obtained while not sacrificing
on the resolution of the converged solution. When simudagifow discharges or other highly non-neutral plasmas irctvhi
ambipolar diffusion or drift do not play a dominant role, thaution obtained with the proposed set of equations etchibi
numerical error not greater than the one obtained usingdinelard set. When simulating plasmas in which ambipoléusidn
plays an important role (such as currentless quasi-nepisiamas enclosed by dielectrics), the present approadhiexh
resolution that is significantly higher than the standarel. drhat is, a solution obtained with the proposed equatiarsseparse
mesh is as accurate as the one obtained with the convengignations on a finer mesh. This gain in resolution is attedtio
the electron transport being rewritten in ambipolar forrd,aherefore, exhibiting less numerical error within plasragions
in which ambipolar diffusion is significant.

The proposed recast of the electron and ion transport emsa advantaged over previous formulations by being ctimpa
ble with the boundary conditions commonly used in plasmadyios. In a previous paper, it was found necessary to reflatsu
the boundary conditions at the anode in order to ensure thas€% law would be satisfied within the anode sheath shbald t
potential equation be obtained from Ohm’s law. Such is neersary with the present set of equations: exactly the same
boundary conditions that are commonly used can be specifiéth@a problem is encountered either at the anode, the cathode
or at the surface of dielectrics.

Because the proposed equations are not intrinsically dirnkespecific discretization or integration schemes andbéxhi
substantial advantages with no apparent disadvantageaitbhgenerally recommended as a substitute to the currehirfadels
in which the electric field is obtained from Gauss’s law agjlas the plasma remains weakly-ionized and unmagnetized.
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A. Proof of Enforcement of Gauss's L aw

It may be argued that, because the electric field is obtairmed & potential equation based on Ohm’s law rather than Gauss
law, Gauss’s law is not necessarily satisfied when solviegstt of governing equations proposed in this paper. However
it is emphasized that the proposed approach necessaritgrgeas that Gauss'’s law is satisfied through the additicowfe
appropriate source terms to the positive ion transport tamua This can be better understood by considering a simple 1
problem with no negative ions, no temperature gradients, zeutrals velocity, and only one type of positive ion. Thitre
proposed ion and electron transport equations (35) siynialif

N, 0 0 N,

R=—+FE—(uN)——|Di— _I/I/i+MiNi£(Ni_Ne) (A1)

ot ox ox ox €

e/’Li]vi a]\/ve e/fLeNe aNI a MeNe a e/fLeNeDi a]vl a e,u*i]viDe aZVe
Re = — —J— S il et il Y el haly A2
¢ o ot o 0t J ox o ox o dx ox o ox W (A-2)
and the potential equation based on Ohm’s law (34) simplifies
ad ad ¢ oN; ON,
Ry = —e(N,—No) + — [ —0—= —eD,— + eD,— A.

= 5 ¢WN N)+8x(68x Py Te ax) A3)

wheree is the elementary charge, where the subscript “e” refergbbetron species and the subscript “i” to the positive ion
species, wher&., R, R, are the residuals that we seek to minimize through an iteratiethod, and where the diffusion
coefficients correspond to:
iksT; ke T,
EMB and DeEMeBe
e e

D,

(A.4)
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Multiply Eq. (A.3) by (w V) /o, add to (A.2), and simplify:

Wi N; IN; d [ el d (eusN:.D; ON, d (euiN;D. 0N,
—Ry+Re=——J— - — e
o dt dx o dx o ox dx o dx (A.5)
o 0x ox ox dx

Substract the latter from Eq. (A.1), simplify noting that= —d¢/dx and thatW;, = W, because no net charge can be created
or destroyed through the chemical reactions:

iN; ad d e iN; 0 d oN;
R B2 R, — R = B (uN) + N — (N, = No + 7 o (£ ) - 22 2 0By — = (D,
o dx € ox o o 0x dx ox (A.6)
+ 0 (eu.N.D; dN, 4 eiN; 0 D N, d (e N D,oN, WwiN;, 9 D ON, '
0x o 0x o ox \'dx x o Ox o ax \“"ox
Regroup the 5th term with the 7th term on the RHS notingdhat ey N, + e Ne:
i]vi 8 a eNe i]vi a
R—ER, — R = E= (uN) + N (N, = N + J — (E22) - B0 2 o)
o dx € dx o o ox (A7)
4 0 (eucN.D; ON, eteN, 0 D oN, d (e N.D 0N, WwiN; 0 D ON, '
0x o Ox o ox \ ox 0x o 0x o ox \“"ox
Note that the current corresponds to:
N, N,
J =0F —eDi— +eD.— (A.8)
ax 0x
Substitute the latter in the former:
i]Vi a 8 eNe i]Vi 8
R—BZIR, — Ro= B uN) + N (N = N + 0E - (F) - B2 o)
o dx € ox o o 0x
dN; 0 [ [eN, d (eueN:.D; ON, epeNe 0 JIN,
—eDi— — — ) - —(p=— A9
¢ 8x8x(o)+8x( o ax) o Ox 0x (A.9)
aZ\Ie a /fLeNe a e,u*i]viDe aZ\Ie ,Uqu 8 a]\/ve
De——— — — = —(eD.—=
te 8x8x(0)+8x( o ax) o ax \“ox
But, note that the following holds:
Jd /0 a [N d [ el
—(Z)=0=e— &2 — == A.10
ox <U) eax( o )+68x( o ) ( )
Isolate the second term on the RHS of the latter and sulestititihin the 8th term on the RHS of the former:
i]Vi a 8 eNe i]Vi 8
R—BZR, R = B uN) + wN—(N = N + 0E - (B) - B2 2 o)
o dx € ox o o 0x
dN; 0 [ [eN. d (eueN:.D; ON, epeNe 0 N,
—eD— — Sl sl il — (D= A1l
¢ 8x8x(0)+8x( o 8x) o 0x ox ( )
aNe a ,LLiNi 8 elLiMDe aNe el/Li]vi a aNe
—eD, B i} — — — (D, —=
¢ 8x8x(0)+8x( o ax) o Ox ox
After expanding the second term on the second line and tlendderm on the third line, and simplifying, we get:
i]vi 8 a eNe i]vi a
R—P R, —Ro=EZ (wN) + uNE (N = N+ oE L [ Bee) - B 2 () (A.12)
o dx € ox o o 0x
Expand the last term on the RHS:
N, 9 9 [ 1teNe IE  EwN,d
R—PTR, R = EZL (uN) + NS (N, = N + oE— (Hele) _ N8 _ 2000 (A.13)
o ox € dx ox o 0x
Expand the 3rd term on the RHS as follows:
3 UeNe 3 eNe d
oE— i = E_(I’LeNe)_Eu _G (A14)
0x o ax o Ox
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Substitute the latter in the former, and simplify notingttha= e(w; N; + pweN.):
iV, oE
R—PYNR, R = N (i(zvi—zve)——) (A.15)
o € ox

Note that when the set of equations (A.1)—(A.3) is convertedresiduals become zerB; — 0, R, — 0, andR, — 0. Then,
from Eq. (A.15), this entails that solving the system (A(B)-3) necessarily results in Gauss’s law being satisfiedcaBse
Gauss's law is satisfied, it can be easily shown that theisalof the modified ion transport equation (A.1) necessaniltails
the solution of the standard ion transport equation. It aafubther shown that this ensures the solution of the stahelactron
transport equation because the solved potential equadigetton Ohm’s law corresponds to the difference betweemghdard
ion and electron transport equations. Thus, it is clearHuat(A.1) does not automatically follow from Equations (Adhd
(A.3), and therefore the system (A.1)—(A.3) is completer¢hare 3 independent equations for 3 unknowns.
Although the proof presented above applies to a three-cagmt@nedimensional plasma, it can also be shown by follgwin

similar steps that the proposed approach provides enougttiegs for the number of unknowns and guarantees that Gdass
is satisfied (either in quasi-neutral or non-neutral regjdar multicomponent and multidimensional weakly-iormiz#gasmas.
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