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Anovel alteration to theCauchy–Kowalevski procedure is here presented to obtain essentiallymonotonic solutions
for multidimensional flows. It is argued that this can be accomplished by splitting the cross-derivative terms among
the several dimensions, such that the coefficient of the cross derivatives remains small compared to the coefficient of
the normal derivatives. The approach naturally lends itself to extending the Roe flux difference splitting scheme to
multiple dimensions and is advantaged over previous Cauchy–Kowalevski-basedmethods by yielding a solution free
of spurious oscillations in the vicinity of oblique shockwaves. Several test cases ranging from low-speed subsonic flows
in channels to hypersonic flows over ramp injectors indicate that the proposed genuinely multidimensional method
generally achieves a twofold or more increase in resolution along each dimension over the dimensionally split Roe
scheme while retaining its appealing attributes: the scheme has a compact three-node-bandwidth stencil, is a finite
volume flux function, yields essentiallymonotonic solutions, introducesminimal dissipationwithin viscous layers, and
is written in general matrix form. Although the method proposed is first-order accurate, it offers a resolution as high
or higher than the dimensionally split second-order total-variation-diminishing schemes for many problems of
interest and is expected to surpass significantly the latter when extended to second-order accuracy.

Nomenclature
A, B, C = flux Jacobian matrix along x, y, and z
a, b = wave speed along x and y
Cf = skin-friction coefficient
CP = pressure coefficient
F, G,H = flux vector along x, y, and z
f, g = flux along x and y
i, j, k = grid index along x, y, and z
L = left eigenvector matrix
M = Mach number
O = truncation error
P = pressure
p = order of accuracy
R = right eigenvector matrix
Rex = Reynolds number along x
S = surface area of computational domain
T = temperature
t = time
U = vector of conserved variables
u = conserved variable
x, y, z = Cartesian coordinate
α = parameter related to obtaining essentially

monotone solutions
β = parameter related to the splitting of the

second derivatives
γ = ratio of the specific heats
Δx, Δy, Δz = grid spacing along x, y, and z
δ = entropy correction factor
ϵ = grid-induced error
Λ = eigenvalue matrix
ρ = density

Subscripts

c = coarse mesh
f = fine mesh
∞ = freestream conditions

I. Introduction

M ULTIDIMENSIONAL differential equations are commonly
discretized by splitting the derivatives along each dimension

and discretizing the so-obtained one-dimensional derivatives using
one-dimensional operators. Referred to as “dimensional splitting,”
such a strategy suffers from being particularly dissipative when the
grid is misaligned with the waves. This entails excessive grid re-
finement, and hence excessive computational effort, to correctly
capture flows with waves propagating oblique to the grid lines. To
remedy this problem, several genuinely multidimensional alter-
natives (i.e., multidimensional schemes that do not resort to di-
mensional splitting) have thus been proposed.
One approach that has been successful at reducing the dissipation

of dimensional splitting is the rotation-interpolation method. Instead
of calculating the fluxes in a coordinate system that is alignedwith the
grid, as is done with dimensional splitting, the fluxes are determined
in a coordinate system that is rotated with respect to the grid through
an interpolation of the node properties [1]. This can be extended
to systems of conservation laws by solving a Riemann problem at
the interfaces of the rotated cell [2–4]. The rotated Riemann solver
approach has some advantages over dimensional splitting. For in-
stance, in [2], it is shown that a first-order-accurate rotated Riemann
solver achieves a resolution approaching the one of a higher-order
MUSCL schemewhen solving expansion fans and shocks. Further, in
[3], it is demonstrated that a rotated Roe scheme has an advantage
over its dimensionally split analog by being free of the aphysical
carbuncle phenomenon. However, because the rotational frame is the
same for all variables (the frame is typically rotated following the
flow velocity), the rotated Riemann solver cannot capture all waves
with a high resolution. For instance, the results obtained in [4] show
that substituting a dimensionally split method by a rotated Riemann
solver can be a mixed blessing: although it does improve the
resolution of shock waves, it results in a poorer resolution of
nonaligned shear waves.
Another approach that can be used to extend the Riemann solver to

multiple dimensions is “residual distribution,” as first proposed by
Roe [5] and later improved by Deconinck et al. [6], Abgrall and
Mezine [7], and Abgrall [8]. The residual distribution scheme
treats the Riemann problem at the cell’s interface in a genuinely
multidimensional manner. This is accomplished by distributing the
flux integral at the cells interfaces (the residual) to the neighboring
nodes in a downwind manner, with the direction of downwinding
being function of the waves within the Riemann solver. This yields
advantages over dimensionally split methods: much less dissipation
is introduced both at low and high Mach numbers (see, for instance,
[9,10]), and the stencil is more compact for the same level of
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