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As demonstrated by Parent, B., et al., (“Electron and Ion Transport Equations in Computational Weakly-Ionized

Plasmadynamics,” Journal of Computational Physics, Vol. 259, 2014, pp. 51–69), the computational efficiency of the

drift-diffusion plasma model can be increased significantly by recasting the equations such that the potential is

obtained fromOhm’s law rather thanGauss’s lawandbyadding source terms to the ion transport equations to ensure

thatGauss’s law is satisfied. Not only did doing so reduce the stiffness of the system, leading to faster convergence, but

it also resulted in a higher resolution of the converged solution. The combined gains in convergence acceleration and

resolution amounted to a hundredfold increase in computational efficiencywhen simulating nonneutral plasmaswith

significant quasi-neutral regions. In this paper, it is shown that such a recast of the drift-diffusion model has yet

another advantage: its lack of stiffness permits the electron and ion transport equations to be integrated in coupled

formalongwith the Favre-averagedNavier–Stokes equations. Test cases relevant to plasma aerodynamics (including

nonneutral sheaths, magnetic field effects, and negative ions) demonstrate that the proposed coupled system of

equations can be converged in essentially the same number of iterations as that describing nonionized flows while not

sacrificing the generality of the drift-diffusion model.

Nomenclature

a = speed of sound of neutrals, m/s
B = magnetic field vector, T
Ck = particule charge of kth species, C
cp = neutrals specific heat at constant pressure, ∂hn∕∂T,

J kg−1 K−1

CFL = user-defined constant needed to find pseudotime step
D = matrix including extra convection terms associated

with charged species
E = electric field vector, −∇ϕ, V/m
Ediv = user-specified constant related to discretization of

electron temperature gradients and typically set to
10 V∕m

Ek = the electric field in kth species reference frame,
E� Vk ×B, V/m

E⋆ = reduced electric field in electron reference frame,
jE� Ve × Bj∕N, Vm2

e = elementary charge, C
ek = specific energy of kth species, hk − Pk∕ρk, J/kg
e⋆t = total energy,wN2

ev �
Pns

k�1 wkek � 1
2
jVnj2 � k, J/kg

ev = nitrogen vibrational energy, RN2
Θv∕

�exp�Θv∕Tv� − 1�, J/kg
e0v = nitrogen vibrational energy at equilibrium,

RN2
Θv∕�exp�Θv∕T� − 1�, J/kg

F = convection flux vector
G = vector of diffusion variables

H = vector including extra convection terms needed for
charged species

hk = specific enthalpy of kth species at its temperature Tk

excluding nitrogen vibrational energy but including
heat of formation, obtained using McBride temper-
ature-dependent polynomials, J/kg

hn = specific enthalpy of neutrals at the temperature T
excluding nitrogen vibrational energy but including
heat of formation, J/kg

J = current density vector, A∕m2

K = diffusion matrix
k = turbulence kinetic energy, J/kg
kB = Boltzmann constant, J/K
Lc = user-specified characteristic length scale used to

determine pseudotime step of potential equation, m
mk = particule mass of kth species, kg
N = total number density of mixture,

P
k Nk, m

−3

Nk = species number density, m−3

ncs = number of charged species
nd = number of dimensions
ns = number of species (including charged species)
Pk = species partial pressure, ρkRkTk, Pa

Pr = adjusted Prandtl number, ηκ

�
cp � wN2

∂e0v
∂T

�
Prt = turbulent Prandtl number, typically set to 0.9
P⋆ = effective pressure including turbulence and electron

energy contributions, 2
3
ρk�Pns

k�1 Pk, Pa

Qb = electron beam power deposited, W∕m3

Q⋆
b = reduced electron beam power deposited, Qb∕N, W

Qk = turbulence kinetic energy production term, W∕m3

Qe
J = electron Joule heating, 1

μe
jCejNejVe − Vnj2,W∕m3

Rk = gas constant of kth species, J/kgK
RΔ = discretized residual vector
S = source term vector
Sct = turbulent Schmidt number, typically set to 1
sk = sign of charge of species k (either �1 for positive

species or −1 for negative species)
T = neutrals and ions temperature, K
Te = electron temperature, K
Tk = temperature of kth species, K
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Tv = nitrogen vibrational temperature, K
t = time, s
U = vector of conserved variables
Vn = velocity of neutrals, m/s
Vr = rth species velocity, m/s
Wk = mass production of species k per unit volume due to

chemical reactions, kg/s
wk = mass fraction of kth species, ρk∕ρ
Xi = grid index along ith dimension
Xi;j = ∂Xi∕∂xj, 1/m
x, y, z = Cartesian coordinates, m
xi = Cartesian coordinates, m
Y = vector function of electric field and current density
Z = matrix related to unsteady terms
z = row number of N2 mass conservation equation
α = nondimensional mass-based ambipolar tensor
βck = 1 if species k is charged species, zero otherwise
βek = 1 if species k is electron, zero otherwise
βnk = 1 if species k is a neutral, zero otherwise
β�k = 1 if species k is positive ion, zero otherwise
β−k = 1 if species k is negative ion or electron, zero otherwise
Γ = preconditioning matrix, 1/s
γ = secondary emission coefficient
ΔVr = velocity contribution due to magnetic field for rth

species, m/s
Δxi = grid spacing along ith dimension, m
Δτ = pseudotime step used to integrate coupled drift-

diffusion Navier–Stokes system, s
Δτϕ = pseudotime step used to integrate potential equation, s
Δn�·� = pseudotime difference operator, �·�n�1 − �·�n
δrk = Kronecker delta
δxi�·� = discretization of derivative ∂�·�∕∂xi
ϵ0 = permittivity of free space, m−3 kg−1 s4 A2

ζD = user-specified parameter related to eigenvalue
conditioning of D� matrices and typically set to 0.2

ζv = fraction of electron Joule heating that is consumed in
excitation of vibration levels of nitrogen molecule

ζeΓ = user-specified parameter related to preconditioning of
electron transport equation and typically set to 0.001

ζiΓ = user-specified parameter related to preconditioning of
ion transport equations and typically set to 0.1

η = viscosity of neutrals mixture, obtained from Wilke’s
mixing rule, Pa s

η⋆k = k transport equation diffusion coefficient, η� 0.5ηt,
Pa s

ηt = turbulence viscosity, 0.09ρk∕ω, Pa s
η⋆ω = ω transport equation diffusion coefficient, η� 0.5ηt,

Pa s
η⋆ = effective viscosity including turbulence contribution,

η� ηt, Pa s
Θv = nitrogen characteristic vibration temperature, 3353 K
κ = thermal conductivity of neutrals mixture obtained

from Mason and Saxena relation, W∕�m K�
κe = electron thermal conductivity, �5∕2�k2BNeμeTe∕jCej,

W∕�m K�
κv = nitrogen vibrational thermal conductivity, wN2

η
Pr

∂ev
∂Tv

,
W∕�m K�

κ⋆v = effective nitrogen vibrational thermal conductivity

including turbulence contribution, wN2

�
η
Pr � ηt

Prt

�
∂ev
∂Tv

,

W∕�m K�
κ⋆ = effective thermal conductivity including turbulence

contribution, cp

�
η
Pr � ηt

Prt

�
, W∕�m K�

μk = mobility of kth species, m2∕�V s�
~μk = tensor mobility of kth species, m2∕�V s�
νk = mass diffusion coefficient for neutral species,

determined from Wilke’s rule, kg/(m s)
ν⋆k = effective mass diffusion coefficient for neutral species

including turbulence contribution, νk � ηt
Sct
, kg/(m s)

ρ = density of mixture,
P

k ρk, kg∕m3

ρc = net charge density,
P

k CkNk, C∕m3

ρe = electron partial mass density, kg∕m3

ρk = partial mass density of kth species, kg∕m3

σ = conductivity,
P

k jCkjNkμk, S/m
σref = user-specified reference conductivity used to deter-

mine pseudotime step of potential equation, S/m
τvt = nitrogen vibration-translation relaxation time, s
ϕ = electric field potential, V
χ = coordinate perpendicular to surface and pointing

toward fluid, m
ψ = nondimensional tensor related to Navier–Stokes

stresses
Ω = inverse of metrics Jacobian
ω = specific dissipation rate of turbulence kinetic energy,

1/s

Superscripts

n = pseudotime level
⋆ = generalized coordinates

I. Introduction

P LASMA aerodynamics, or plasma flow control, has in recent
years been demonstrated through various experiments to be

potentially capable of improving significantly the performance of
aircraft either through dielectric barrier discharge (DBD) actuators or
through magnetohydrodynamic (MHD) generators and accelerators.
Experiments have indeed shownDBD andMHD devices to be viable
in preventing separation on the leading edge of subsonic airfoils [1,2],
in reducing losses in turbojet compressors [3], in reducing aircraft
noise [4,5], in controlling boundary-layer transition [6–8], in
reducing turbulent boundary-layer thickness [9], in enhancing jet
mixing [10], in controlling shock–boundary-layer interaction [11], or
in generating power aboard hypersonic flight vehicles [12].
However, there are various physical phenomena encountered in

plasma flow control experiments that are incompletely understood due
to the difficulty in simulating numerically such experiments. Indeed,
numerical simulations of plasma aerodynamics have been limited so
far either to1) strictly plasma simulations, inwhich the electron and ion
transport equations are solved (through fluid or kinetic models) while
neglecting their impact on the neutrals [13–20]; 2) strictly Navier–
Stokes simulations, in which the Navier–Stokes equations with
approximate plasma source terms to account for the Coulomb/Lorentz
forces are solved independently of the charged species [21–27];
3) MHD simulations, in which the Euler or Navier–Stokes equations
augmented with Lorentz forces are solved in conjunction with plasma
equations in the quasi-neutral state [28–31]; or more rarely 4) loosely
coupled simulations, in which the charged species and the Navier–
Stokes equations are integrated using two different modules with
greatly varying integration step lengths [32,15]. The first three
approaches suffer from an incomplete physical model that either
neglects the dependence of the charged species on the neutrals (or vice
versa) or assumes that the plasma is in the quasi-neutral state.Although
the fourth approach, the loosely coupled strategy, provides a more
accurate physical model, it is seldom the method of choice because it
leads to excessive grid-induced error (due to the too-low integration
step length of the charged species leading to a too-large number of
iterations and hence preventing the use of fine-enough grids).
The integration in coupled form of both the charged species and the

Navier–Stokes equations without assuming quasi neutrality and using
an integration step length similar to the one used in nonionized
aerodynamics would be advantaged over all previous strategies by
keeping both the physical error and the grid-induced error low, hence
leading to a significant enhancement in the quality of numerical results
for plasma aerodynamics. Unfortunately, this has proven not to be
feasible so far due to the high stiffness associated with the electron and
ion transport equations in which the velocity is determined from the
drift-diffusion model and the electric field is determined from Gauss’s
law. The stiffness of such a system of equations was commonly
attributed to the large discrepancy of the physical time scales involved.
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Indeed, such a set of equations does offer a large variation of time
scales: whereas electrons travel at millions ofmeters per secondwithin
cathode sheaths, the ions travel at a speed less than a few hundred
meters per second within quasi-neutral regions. (The large difference
in speeds throughout the plasma system is due to the drift velocity of
charged species being the product of electric field strength and
mobility, with the mobility of electrons exceeding the one of ions by
two orders of magnitude and with the electric field strength within the
cathode sheath exceeding the electric field strength within the quasi-
neutral plasma also by two orders of magnitude.) Because the stiffness
could not be overcome through the use of block-implicit methods
(which are a well-established strategy to integrate efficiently systems
with excessively low time scales originating from chemical reactions
or viscous effects), simulations of the drift-diffusion model typically
required excessively small integration step lengths leading to millions
of iterations to reach convergence. Thus, should the stiff drift-
diffusion-based charged species transport equations be integrated in
coupled form with the Navier–Stokes equations, the integration step
length of the overall system would need to be orders of magnitude
lower than the one commonly used to integrate aerodynamic flows,
hence requiring excessive computing resources to tackle even the
simplest problems.
Recent advances in computational plasmadynamics may enable this

hurdle to be surmounted. In [33], it was argued that the stiffness of the
drift-diffusion model was not due to the disparate physical time scales
but rather due to thepotential equation basedonGauss’s lawamplifying
the numerical error associated with the densities within quasi-neutral
regions. Indeed, when using a block-implicit method to advance the
solution in pseudotime and when linearizing the diffusion, convection,
and source terms, it was observed that the drift-diffusionmodel became
stiff only when a quasi-neutral region of substantial size would form
within the domain. On the other hand, the drift-diffusion model did not
exhibit stiffness when the plasma was free of quasi-neutral regions.
Because the physical time scales were essentially the same whether or
not the plasma included regions of quasi neutrality, the stiffness
associated with the drift-diffusion model could not originate from the
discrepancy between the physical time scales. Rather, it was found that
the observed stiffness in regions of quasi neutrality originated from
Gauss’s law amplifying the errors associated with the electron and ion
densities (see Sec. 8 in [33] for more details on this point).
To get rid of the stiffness associated with the solution of Gauss’s

law, a strategy was thus proposed in [33] in which the potential
equation is obtained froma formofOhm’s lawand some source terms
are added to the ion transport equation to ensure that Gauss’s law
remains satisfied in regions of nonneutrality. As well, it was found
beneficial to rewrite the electron transport equation in ambipolar
form, following the approach outlined in [34] (butwithmodifications
for a nonneutral plasma) in order to obtain a higher resolution of the
converged solution. In doing so, the system of equationswas found to
be free of stiffness when solved with block-implicit methods and
could be converged in 100–1000 times fewer iterations than the
standard approach. The newly recast computationally efficient drift-
diffusion model was then extended to multicomponent multidimen-
sional plasmas in [35] and to multicomponent plasmas in a magnetic
field in [36]. Again, it was found through several test cases that the
new approach was considerably more computationally efficient: not
only did it require fewer iterations to reach convergence, but it also
exhibited a higher resolution of the converged solution. The
combined gains in convergence acceleration and in resolution
resulted in a 100-fold gain in computational efficiency when
compared to the standard drift-diffusion model.
It is emphasized that the computationally efficient Ohm-based

governing equations (in which the potential is obtained from Ohm’s
law) are obtained from the same physical model as the standard
Gauss-based governing equations (in which the potential is obtained
from Gauss’s law) without introducing additional assumptions or
simplifications. Because of this, both sets of equations yield the same
solution when the grid is refined sufficiently. This was confirmed in
[35] and [36], in which several grid convergence studies of
nonneutral cathode sheaths, glow discharges, dark discharges, and
plasmas contained between dielectrics showed that the Ohm-based

system of equations yields the same exact solution as the standard
Gauss-based systemwhile being considerable more computationally
efficient due to its lack of stiffness and its higher resolution of the
converged solution.
In this paper, we show that the computationally efficient Ohm-

based drift-diffusion model proposed by the authors in previous
papers has yet another advantage: it can be integrated in coupled form
with the Navier–Stokes equations. This is in contrast to previous
numerical simulations of plasma aerodynamics in which the charged
species equations and the neutrals transport equations were solved
using two different integration processes (whichwas necessary due to
the conventional drift-diffusion model being too stiff to be integrated
in coupled form with the neutrals). Using two different integration
strategies not only increases the computational time but can also lead
to problems in maintaining monotonicity or conservation of the
fluxes when linking the two sets of equations together. Such issues
are avoidedhere by solving all transport equations conjunctly.Aswill
be shown through several test cases of cathode and anode sheaths
interacting with turbulent boundary layers, the coupled drift-
diffusion and Navier–Stokes system of equations proposed here is
remarkably computationally efficient. Indeed, for many problems, a
converged solution can be obtained in a couple of thousand iterations,
which is essentially the same number of iterations aswhen simulating
nonionized aerodynamic flows.

II. Computationally Efficient Drift-Diffusion Model

As was shown in [33] and later extended to a multicomponent
plasma in [35] and to a plasma in a magnetic field in [36], the
computational efficiency of the drift-diffusion model can be
improved 100-fold or more when recast such that the potential is
obtained from a form of Ohm’s law rather than Gauss’s law. Of
course, for such a recast not to alter the physical model, it is necessary
to make changes to the ion and electron transport equations to ensure
that Gauss’s law is satisfied in nonneutral regions. A form of the ion
and electron transport equations that satisfies the drift-diffusion
model while solved alongside a potential equation based on Ohm’s
law was determined to be [36]

Xns
r�1

αkr
∂ρr
∂t

�
X3
i�1

Xns
r�1

∂
∂xi

αkr�ΔVr
i � Vn

i �ρr

�
X3
i�1

�β�k Ei − β−kJi�
∂
∂xi

μkρk

�
β�k � 1

σ
β−k

�

−
X3
i�1

Xns
r�1

∂
∂xi

�
μrkBTrαkr

jCrj
∂ρr
∂xi

�

� Wk − β�k μkρk
ρc
ϵ0

�
Xns
r�1

X3
i�1

∂
∂xi

�
μrkBρrαkr

jCrj
∂Tr

∂xi

�
(1)

where Ck is the charge of species k (equal to e for the singly charged
positive ions, to −e for the electrons, to −2e for the doubly charged
negative ions, etc.) and ρc is the net charge density defined as

ρc ≡
Xns
r�1

CrNr (2)

In addition, J is the current density defined as

J ≡
Xns
r�1

CrNrV
r (3)

withVr the species velocity including drift and diffusion, which, for a
weakly ionized plasma in a magnetic field, can be shown to
correspond to

Vk
i � Vn

i �
X3
j�1

sk ~μ
k
ijE

n
j −

X3
j�1

~μkij
jCkjNk

∂Pk

∂xj
(4)

with the tensor mobility equal to

900 PARENT, SHNEIDER, AND MACHERET

D
ow

nl
oa

de
d 

by
 B

er
na

rd
 P

ar
en

t o
n 

M
ar

ch
 3

1,
 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

46
24

 



~μk� μk
1�μ2k jBj2

2
4 1�μ2kB

2
1 μ2kB1B2�skμkB3 μ2kB1B3−skμkB2

μ2kB1B2−skμkB3 1�μ2kB
2
2 μ2kB2B3�skμkB1

μ2kB1B3�skμkB2 μ2kB2B3−skμkB1 1�μ2kB
2
3

3
5
(5)

Further, the nondimensional mass-based ambipolar tensor α is
defined as

αkr ≡
mk

mr

�
δrkσ � β−k CrμkNk

σ

�
(6)

and the difference between the velocity of the kth species and the
velocity of the kth species should themagnetic field be zero,ΔVk

i , can
be shown to correspond to

ΔVk
i �

X3
j�1

sk ~μ
k
ijE

n
j �

X3
j�1

�
δijμk − ~μkij
jCkjNk

�
∂Pk

∂xj
− skμkEi (7)

whereEk is the electric field in the kth species reference frame, which
stands for

Ek ≡E� Vk × B (8)

In the latter, the electric field E is determined from a form of the
generalized Ohm’s law applicable to a multispecies mixture [37]:

∂ρc
∂t

−
X3
i�1

∂
∂xi

�
σ
∂ϕ
∂xi

�
�

Xncs
k�1

X3
i�1

∂
∂xi

CkNk�ΔVk
i � Vn

i �

−
Xncs
k�1

X3
i�1

∂
∂xi

�
skμkNkkB

∂Tk

∂xi

�

−
Xncs
k�1

X3
i�1

∂
∂xi

�
skμkTkkB

∂Nk

∂xi

�
� 0 (9)

It is emphasized that the Ohm’s-law-based system of equations
outlined in this section is obtained from the samephysicalmodel as the
conventional Gauss’s-law-based drift-diffusion model and as such has
the same exact solution (when the mesh size tends toward infinity).
Nonetheless, despite yielding the same solution on refinedmeshes, the
recast drift-diffusion model summarized previously is free of stiffness
(when used in conjunction with a block-implicit integration strategy)
and is typically 100 times or more computationally efficient for
problems characteristic of plasma aerodynamics.

III. Coupled Drift-Diffusion and Navier–Stokes System

Because the new computationally efficient drift-diffusion model
outlined in the previous section does not restrict the integration step
length to excessively small values, it can be solved in coupled form
with the neutrals transport equations through the same integration
strategy using aerodynamic-scale time steps. Thus, we regroup here
the electron and ion mass conservation equation outlined in Eq. (1)
with the conservation equations of the mass, momentum, total
energy, vibrational energy, and turbulence kinetic energy and specific
dissipation rate that are commonly used in turbulent chemically
reacting compressible flow codes. We choose here to close the
turbulence transport equations with the Wilcox kω model [38]
because, in contrast to the kϵ models, it can be conveniently
integrated through the laminar sublayer of the turbulent boundary
layer without the need of wall functions. Using wall functions here
would be problematic because it would require the near-boundary
node to be located at a too-high distance from the wall, hence
preventing enough grid points from being located within the cathode
and anode sheaths.
In matrix form, the coupled drift-diffusion and Navier–Stokes

system thus becomes

Z
∂U
∂t

�
X3
i�1

∂
∂xi

DiU �
X3
i�1

∂Fi

∂xi
−
X3
i�1

X3
j�1

∂
∂xj

�
Kij

∂G
∂xi

�

�
X3
i�1

Yi

∂H
∂xi

� S (10)

where the vector of conserved variablesU and the vector of diffusion
variables G correspond to

U �

2
66666666666666664

ρ1
..
.

ρns
ρVn

1

..

.

ρVn
3

ρe⋆t
ρk
ρω

ρN2
ev

3
77777777777777775

G �

2
66666666666666664

ρ1β
c
1 � w1β

n
1

..

.

ρnsβ
c
ns � wnsβ

n
ns

Vn
1

..

.

Vn
3

T
k
ω
Tv

3
77777777777777775

(11)

where the total specific energy e⋆t includes the sum of the species
specific internal energies, the kinetic energy of the neutrals, and the
turbulence kinetic energy,

e⋆t � wN2
ev �

Xns
k�1

wkek �
1

2
jVnj2 � k (12)

with the species specific internal energy obtained from its respective
specific enthalpy as ek � hk − Pk∕ρk. The species specific enthalpy
hk includes the heat of formation and is found from the species
temperature (Te for the electrons and T for the ions and the neutrals)
using polynomials from McBride [44]. Such polynomials are
typically valid for most species in the range 200–20,000 K. Should
the temperature exceed the limit for which the polynomials are valid,
the species enthalpy is assumed calorically perfect in the range
exceeding the maximum temperature (either 6000 or 20,000 K
depending on the species). Because the nitrogen vibrational energy is
taken into account through the nitrogen vibration energy in
nonequilibrium, ev, the specific energy and enthalpy of nitrogen (i.e.,
eN2

and hN2
) do not include the nitrogen vibrational energy.

It is pointed out that the total energy equation outlined here was
obtained by summing the energy equations for the ions, the electrons,
and the neutrals. The energy equation for each species was itself
obtained from the first law of thermodynamics and the momentum
equation (either drift diffusion or Navier–Stokes) applicable to each
species. For this reason, the total energy e⋆t does not include the
kinetic energy of the electrons or the ions because the kinetic energy
terms originate from the inertia terms within the momentum
equations, and the charged species momentum equations based on
the drift-diffusion model do not include the inertia terms. Thus,
including the kinetic energy of the charged species within the total
energy would not be more accurate here because it would lead to a
total energy equation that would not satisfy the first law for each
charged species.
A third vector needed within the coupled governing equations is

the convective flux Fi, which corresponds to

Fi �

2
66666666666666664

ρ1V
n
i

..

.

ρnsV
n
i

ρVn
i V

n
1 � δi1P

⋆

..

.

ρVn
i V

n
3 � δi3P

⋆

ρVn
i e

⋆
t � Vn

i P
⋆

ρVn
i k

ρVn
i ω

ρN2
Vn

i ev

3
77777777777777775

(13)
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where the effective pressure P⋆ includes contributions from the
neutrals, ions, and electrons (as obtained from Dalton’s law) but also
from the turbulence kinetic energy,

P⋆ �
Xns
k�1

Pk �
2

3
ρk (14)

where the partial pressures are obtained using the ideal gas law
Pk � ρkRkTk with the temperature of the ions and neutrals set to the
bulk gas temperature T and the temperature of the electrons
determined as a function of the effective electric field (more on this in
the following).
Another vector that is needed within Eq. (10) is the source term S

S �

2
66666666666666666664

W1 − β�1 μ1ρ1
ρc
ϵ0
�P

3
i�1

∂
∂xi

μekBρeα1e
jCe j

∂Te

∂xi

..

.

Wns − β�nsμnsρns
ρc
ϵ0
�P

3
i�1

∂
∂xi

μekBρeαnse
jCe j

∂Te

∂xi
ρcE1 � �J × B�1

..

.

ρcE3 � �J × B�3
E · J�Qb �

P
3
i�1

∂
∂xi

κe
∂Te

∂xi
Qk − ρkω

ω
k

�
5
9
Qk − 5

6
ρkω

�
WN2

ev � ζvQ
e
J � 1

τvt
ρN2

�e0v − ev�

3
77777777777777777775

(15)

whereWk corresponds to the mass production per unit volume of the
kth species due to chemical reactions, with the chemical reactions
taking place in air taken fromRefs. [35,39–43] as outlined in Table 1.
The chemical reactions include Townsend ionization, electron–ion
recombination, ion–ion recombination, electron attachment, electron
beam ionization, and nitrogen and oxygen dissociation. In
determining the reduced electric field needed for the Townsend
ionization rates when the plasma is in the presence of a strong

externally applied magnetic field, it is important to use the electric
field in the electron frame of reference instead of the laboratory or
neutrals reference frame. A justification for doing so and details on
how to find iteratively the electric field in the charged species
reference frame can be found in the appendix of Ref. [36].
In addition, e0v stands for the nitrogen vibration energy at

equilibrium, which is written as a function of the characteristic
vibrational temperature of nitrogen (as inRef. [47])with the latter set to
3353 K as suggested in [48]. Further, the fraction of the Joule heating
that is consumed in the excitation of the vibration levels of the nitrogen
molecule ζv is as specified in [45,46] as outlined in Table 2, while the
vibration-translation relaxation time τvt is taken here from [49,29],

1

τvt
� 7 · 10−16 · N · exp�−141 · T−1∕3� � 5 · 10−18 · NO

· exp�−128 · T−1∕2� (16)

with τvt in seconds, N in meters−3, and T in Kelvin. The latter
correlation for the nitrogen vibrational relaxation time is preferred to
the more commonly used Millikan correlation because it is
significantly more accurate at the low temperatures typically
encountered in plasma aerodynamics.
Two other terms appearing within the source vector S that need to

be specified are the electron species Joule heating, which can be
derived from basic principles to become (see the Appendix)

Qe
J �

jCejNe

μe
jVe − Vnj2 (17)

and the turbulence kinetic energy production term Qk, which can be
shown to be equal to [50]

Qk �
X3
i�1

X3
j�1

�
ηt

�
∂Vn

i

∂xj
� ∂Vn

j

∂xi
−
2

3
δij

X3
k�1

∂Vn
k

∂xk

�
−
2

3
δijρk

�
∂Vn

i

∂xj
(18)

Also needed within the coupled system Eq. (10) are the vectors Y
and H,

Table 1 Eight-species, 28-reactions air chemical model used for all test cases shown hereina

No. Reaction Rate coefficient References

1a e− � N2 → N�
2 � e− � e− exp�−0.0105809 · ln2E⋆ − 2.40411 · 10−75 · ln46E⋆� cm3∕s [35]

1b e− � O2 → O�
2 � e− � e− exp�−0.0102785 · ln2E⋆ − 2.42260 · 10−75 · ln46E⋆� cm3∕s [35]

2a e− � O�
2 → O� O 2.0 · 10−7 · �300∕Te�0.7 cm3∕s [39]

2b e− � N�
2 → N� N 2.8 · 10−7 · �300∕Te�0.5 cm3∕s [40]

3a O−
2 � N�

2 → O2 � N2 2.0 · 10−7 · �300∕T�0.5 cm3∕s [40]
3b O−

2 � O�
2 → O2 � O2 2.0 · 10−7 · �300∕T�0.5 cm3∕s [40]

4a O−
2 � N�

2 � N2 → O2 � N2 � N2 2.0 · 10−25 · �300∕T�2.5 cm6∕s [40]
4b O−

2 � O�
2 � N2 → O2 � O2 � N2 2.0 · 10−25 · �300∕T�2.5 cm6∕s [40]

4c O−
2 � N�

2 � O2 → O2 � N2 � O2 2.0 · 10−25 · �300∕T�2.5 cm6∕s [40]
4d O−

2 � O�
2 � O2 → O2 � O2 � O2 2.0 · 10−25 · �300∕T�2.5 cm6∕s [40]

5a e− � O2 � O2 → O−
2 � O2 1.4 · 10−29 · �300∕Te� · exp�−600∕T� · exp�700 · �Te − T�∕�TeT�� cm6∕s [40]

5b e− � O2 � N2 → O−
2 � N2 1.07 · 10−31 · �300∕Te�2 · exp�−70∕T� · exp�1500 · �Te − T�∕�TeT�� cm6∕s [40]

6 O−
2 � O2 → e− � O2 � O2 8.6 · 10−10 · exp�−6030∕T��1 − exp�−1570∕T�� cm6∕s [41], Ch. 2

7a O2 → e− � O�
2 2.0 · 1017 · Q⋆

b 1∕s [42]
7b N2 → e− � N�

2 1.8 · 1017 · Q⋆
b 1∕s [42]

8a O2 � O2 → 2O� O2 3.7 · 10−8 · exp�−59380∕T��1 − exp�−2240∕T�� cm3∕s [43], [39]
8b O2 � N2 → 2O� N2 9.3 · 10−9 · exp�−59380∕T��1 − exp�−2240∕T�� cm3∕s [43], [39]
8c O2 � O → 3O 1.3 · 10−7 · exp�−59380∕T��1 − exp�−2240∕T�� cm3∕s [43], [39]
8d N2 � O2 → 2N� O2 5.0 · 10−8 · exp�−113200∕T��1 − exp�−3354∕T�� cm3∕s [43], [39]
8e N2 � N2 → 2N� N2 5.0 · 10−8 · exp�−113200∕T��1 − exp�−3354∕T�� cm3∕s [43], [39]
8f N2 � O → 2N� O 1.1 · 10−7 · exp�−113200∕T��1 − exp�−3354∕T�� cm3∕s [43], [39]
9a O� O� O2 → 2O2 2.45 · 10−31 · T−0.63 cm6∕s [43], [39]
9b O� O� N2 → O2 � N2 2.76 · 10−34 · exp�720∕T� cm6∕s [43], [39]
9c O� O� O → O2 � O 8.8 · 10−31 · T−0.63 cm6∕s [43], [39]
9d N� N� O2 → N2 � O2 8.27 · 10−34 · exp�500∕T� cm6∕s [43], [39]
9e N� N� N2 → 2N2 8.27 · 10−34 · exp�500∕T� cm6∕s [43], [39]
9f N� N� O → N2 � O 8.27 · 10−34 · exp�500∕T� cm6∕s [43], [39]
9g N� N� N → N2 � N 8.27 · 10−34 · exp�500∕T� cm6∕s [43], [39]

aNotation and units:E⋆ is the reduced effective electric field in the electron reference frame (E⋆ ≡ jE� Ve × Bj∕N) in units ofV · m2;Te is the electron temperature inKelvin;T

is the neutrals temperature in Kelvin; and Q⋆
b is the ratio in Watts between the electron beam power per unit volume Qb and the total number density of the plasma

N (Q⋆
b ≡Qb∕N).
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Yi �

2
666666664

β�1 Ei − β−1Ji

..

.

β�nsEi − β−nsJi

0

..

.

0

3
777777775

D

H �

2
66666666664

ρ1μ1
�
β�1 � 1

σ β
−
1

�
..
.

ρnsμns

�
β�ns � 1

σ β
−
ns

�
0

..

.

0

3
77777777775

(19)

where the charged speciesmobilities μk are a function of total number
density, species temperature, and reduced electric field. Expressions
for the charged species mobilities in dry air can be found in Ref. [35].
The electron temperature needed to obtain the mobility, the effective
pressure, the specific enthalpy, and the specific internal energy of the
electron species is obtained here through the local approximation by
assuming that the electron temperature is a function of the local
reduced electric field and does not depend on its gradients in space or
time. This can be shown to yield an expression for Te function ofE

⋆,
as outlined in Table 3. This is generally accepted to yield a good
approximation of the electron temperature except within the cathode
sheath. Such is not a cause of concern, however, because the latter is
primarily ion dominated and does not depend too significantly on
electron temperature for many problems of interest.

It is preferred to use polynomials fits to find ηv and Te rather than
interpolate through the raw data directly as was done in previous
simulations of weakly ionized plasmas. Using either strategy would

yield similar results when using explicit schemes to integrate the
governing equations. However, when using an implicit scheme as
done herein, it is important to use smooth polynomials to obtain
optimal convergence rates. Should we interpolate through the raw
data instead of using polynomials, the derivatives within the
Jacobians could change abruptly from one time step to the other, and
this could lead to slower convergence or even convergence hangs.
Three more matrices that are needed within the coupled governing

equations are the matrix D,

�Di�k;r �
8<
:
αkrΔVr

i � �αkr − δkr�Vn
i if k ≤ ncs and r ≤ ncs

1
e⋆t

Pncs
m�1 wmhm�Vm

i − Vn
i � if k � r � ns � 4

0 otherwise

(20)

the matrix Z related to the unsteady terms,

�Z�k;r �
�
αkr if k ≤ ns and r ≤ ns
δkr otherwise

(21)

and the diffusion matrix K, which includes the Navier–Stokes shear
stresses as well as all second derivatives except for electron
temperature gradients,

�Kij�k;r �

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

δij
�
δkrν

⋆
k β

n
k � 1

jCrj μrkBTrαkrβ
c
kβ

c
r

�
if k ≤ ns and r ≤ ns

δij
Pns

m�1
1

jCmj β
i
mβ

c
kμmkBρmαkm if k ≤ ns and r � ns � 4

�ψ ij�k−ns;r−nsη⋆ if ns < k ≤ ns � 3 andns < r ≤ ns � 3

δij�hr � evδrz�ν⋆r βnr if k � ns � 4 and r ≤ nsP
3
m�1 �ψ ij�m;r−ns

η⋆Vn
m if k � ns � 4 and ns < r ≤ ns � 3

δijκ
⋆ if k � ns � 4 and r � ns � 4

δijη
⋆
k if k � ns � 4 and r � ns � 5

δijκ
⋆
v if k � ns � 4 and r � ns � 7

δijη
⋆
k if k � ns � 5 and r � ns � 5

δijη
⋆
ω if k � ns � 6 and r � ns � 6

δijκ
⋆
v if k � ns � 7 and r � ns � 7

δijν
⋆
N2
ev if k � ns � 7 and r � z

0 otherwise

(22)

where z is the row number of the N2 mass conservation flux and
where ψ ij is a tensor related to the Navier–Stokes stresses that can be
shown to be equal to

�ψ ij�k;r � δijδkr � δkiδrj − �2∕3�δkjδri (23)
Table 2 Polynomial coefficients needed

for the fraction of energy consumed in the
excitation of vibration levels of the nitrogen

molecule, ζv �
P

10
n�0 knT

n
e
a,b,c

Coefficient Value

k0 �1.8115947E − 3
k1 �2.1238526E − 5
k2 −2.2082300E − 8
k3 �7.3911515E − 12
k4 −8.0418868E − 16
k5 �4.3999729E − 20
k6 −1.4009604E − 24
k7 �2.7238062E − 29
k8 −3.1981279E − 34
k9 �2.0887979E − 39
k10 −5.8381036E − 45

aThe expression for ζv can be used in the range

0 < Te < 60;000 K.
bThe polynomial approximates the experimental data

in [45] and Chap. 21 of [46].
cTe is in Kelvin.

Table 3 Polynomial coefficients needed to
determine the electron temperature,

Te � maxfT; exp�P8
n�0 kn�lnE⋆�n�ga,b,c

Coefficient Value

k0 −3.69167532692495882511E� 08
k1 −6.26956713747712671757E� 07
k2 −4.65528490607805550098E� 06
k3 −1.97394448288739687996E� 05
k4 −5.22784662897089219769E� 03
k5 −8.85545617874565635930E� 01
k6 −9.36914737923363882821E − 01
k7 −5.66073394421067171284E − 03
k8 −1.49535882691330832494E − 05

aThe expression for Te can be used in the range

0 < E⋆ < 3 × 10−19 Vm2.
bThe polynomial approximates the experimental data in

Chap. 21 of [46].
cE⋆ is in Vm2, Te in Kelvin, T in Kelvin.
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In the latter, themolecular thermal conductivity for the neutrals κ is
determined from the Mason and Saxena relation and polynomials
obtained from [51], while the neutrals viscosity η and the molecular
diffusion νk are determined from Wilke’s mixing rule with
polynomials for each species found in [51].

IV. Surface Boundary Conditions

While the flow properties at the inflow and outflow conditions can
be specified similarly as in nonionized aerodynamics, special care
must be taken in applying the boundary conditions at the surfaces of
dielectrics and electrodes. For the charged species partial densities,
here we follow the boundary conditions for a weakly ionized plasma
specified in [35]. Specifically, for dielectrics or for Eχ < 0, the
following boundary condition is imposed:

∂
∂χ

N�V�
χ � 0; N− � 0; Ne �

γ

μe

Xns
k�1

Nkμkβ
�
k (24)

whereas for conductors and for Eχ ≥ 0, the following boundary
condition is imposed:

N� � 0;
∂
∂χ

N−V
−
χ � 0;

∂
∂χ

NeV
e
χ � 0 (25)

where χ is a coordinate perpendicular to the surface and pointing
toward the fluid and γ is the secondary emission coefficient typically
set to 0.1. In addition,Eχ is the component of the electric field in the
direction of χ, while the subscripts/superscripts �, −, and e refer to
the position ions, negative ions, and electrons, respectively.
Meanwhile, because the neutrals mass fractions must not exhibit a
gradient perpendicular to the surfaces, the following must hold:

βnk
∂
∂χ

wk � 0 (26)

Further, the total density of the mixture must be such that there is
no gradient of the effective pressure including turbulence kinetic
energy and electron energy contributions:

∂
∂χ

P⋆ � 0 (27)

In addition, on the surface nodes, the bulkmixture temperatureT is
fixed to a user-specified constant, and the velocity of the neutrals is
fixed to zero. Regarding the boundary condition for vibrational
temperature, the vibrational accommodation coefficient depends on
the surface material and temperature. At T � 300 K, the vibrational
accommodation coefficient for nitrogen on any dielectric,
semiconductor, or metallic surface is quite low, on the order of
0.001 to 0.01 [52,53]. Therefore, in the first approximation, we can
assume that the vibrational accommodation coefficient is equal to
zero, which leads to the following boundary condition:

∂
∂χ

Tv � 0 (28)

To close the system of equations at the surface nodes, we need two
more equations for the turbulence kinetic energy and its dissipation
rate. Because the kω turbulence model is integrated here through the
entire boundary layer including the laminar sublayer, we should not

use wall functions but rather fix the turbulence kinetic energy and its
specific dissipation rate to their asymptotic expressions assuming that
the surface is smooth [38],

k � 0 (29)

ω � 36

5

η

ρ�Δχ�2 (30)

where Δχ is the distance between the wall node and its nearest
inner node.
The boundary conditions needed to obtain U at the surface nodes

as outlined in this section can be applied to either electrodes or
dielectrics. Further, on the dielectrics, the potential is specified such
that no current flows perpendicular to the surface. This can be shown
to yield the following:

∂ϕ
∂χ

� −
1

σ

Xncs
k�1

skμk
∂Pk

∂χ
for dielectrics only (31)

Although the latter is only valid in the steady-state regime for
which the charge accumulation on the dielectric surface does not vary
in time, the rate of change of the charge accumulation can be taken
into account by varying the potential on the dielectric surface as
specified in [54].
It is noted that the expressions presented in this section were

derived assuming no external magnetic field. However, they remain
valid in the presence of a magnetic field following the strategy
outlined in [36] by setting the magnetic field vector to zero at the
boundary and near-boundary nodes.

V. Discretization Stencils

Some of the derivatives within the system of equations comprising
the recast drift-diffusion model and the Favre-averaged Navier–
Stokes outlined in Eq. (10) are commonly encountered in
aerodynamics and can be discretized using standard stencils. For
instance, the convection derivative ∂Fi∕∂xi is discretized through the
Roe flux difference splitting scheme [55] turned second-order
accurate through the centered Yee limiters [56] and using
eigenvectors and eigenvalues similar to those outlined in the
appendix of [57] but with modifications for a real gas with multiple
species including the turbulence kinetic energy and the nitrogen
vibrational energy in nonequilibrium. In addition, the second
derivative ∂∕∂xj�Kij∂G∕∂xi� is discretized using centered stencils as
such does not lead to spurious oscillations.
On the other hand, other derivatives within Eq. (10) such as

Yi∂H∕∂xi and ∂DiU∕∂xi are not commonly encountered and require
nonstandard discretization stencils. To obtain monotonic solutions,
the termYi∂H∕∂xi is discretized, following the approach specified in
[33], and the term ∂DiU∕∂xi is discretized using a flux vector
splitting approach of the form

�DiU�Xi�1∕2 � �D�
i �XiUXi � �D−

i �Xi�1UXi�1 (32)

which is turned second-order accurate through upwinded Total
Variation Diminishing minmod limiters. In Eq. (32), the matrix D�

i
corresponds to

�D�
i �k;r �

8<
:
0.5�Di�k;k � 0.5 max�βckζDa; j�Di�k;kj� if r � k
�Di�k;r��D�

i �r;r − �D�
i �k;k�∕��Di�r;r − �Di�k;k� if k ≤ ncs and r ≤ ncs and r ≠ k

�Di�k;r otherwise

(33)
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It can be easily demonstrated that the latter becomes the Steger–
Warming scheme if only one type of negative species is present (i.e.,
if the plasma has no negative ions). When more than one type of
negative species is present, the latter formulation for D�

i will still
result inD�

i �D−
i � Di, a necessary condition for a well-posed flux

vector splitting scheme. It could be argued that the use of a Steger–
Warming-like stencil leads to excessive dissipation within viscous
layers and hence prevents boundary layers to be resolved with high
resolution. However, this is only the case if it is used to discretize the
term ∂Fi∕∂xi. When discretizing the term ∂DiU∕∂xi, the use of flux
vector splitting does not lead to a low resolution of viscous layers.
In addition, because electron temperature is a function of the

reduced electric field, which is itself a function of potential gradients,
the second derivatives of the electron temperaturewithin the potential
equation yield third derivatives in the potential. Taking the latter into
consideration, it can be demonstrated that, should centered
discretization stencils be used for the electron temperature
derivatives, the discretization equation for the potential equation
would not be monotonicity preserving and hence could lead to
spurious oscillations. To prevent even–odd discoupling of the
potential, it can be shown that the electron temperature derivatives
should be upwinded in the direction of the electric field. The stencil
that we are proposing for this purpose is thus

�δxiTe�Xi�1∕2� 1

Δxi

h�TXi�1∕2
e −T

Xi−1∕2
e ��jEXi

i j�EXi
i �Ediv���TXi�3∕2

e −T
Xi�1∕2
e ��jEXi�1

i j−EXi�1
i �Ediv�

i
�jEXi

i j�jEXi�1
i j�2Ediv� (34)

where Ediv is a small user-specified constant that is typically set to
10 V∕m and that is needed to prevent a division by zero. The latter
discretization stencil needs to be applied not only to the electron
temperature gradient terms within the potential equation but also to
the electron temperature gradient terms within the charged species
transport equations. On the other hand, the electron temperature
gradient terms within the total energy equation can be discretized
using centered stencils as they do not lead to any problem.
Another term that needs special consideration upon discretizing

the equations is the magnitude of the electric field used to calculate
the electron temperature using the local approximation. To prevent
even–odd node discoupling, it is found necessary to apply a
smoothing operator as follows:

jEej � 1

nd

Xnd
i�1

�
�1∕6��jEejXi−3∕2�0.4 � �1∕3��jEejXi−1∕2�0.4

��1∕3��jEejXi�1∕2�0.4 � �1∕6��jEejXi�3∕2�0.4
�
1∕0.4

�35�

Note that the latter smoothing operator is only used when
determining the electron temperature from the effective electric field
in the electron reference frame. When needed to compute the
Townsend ionization chemical source terms (i.e., reactions 1a and 1b
in Table 1), the effective electric field at a given node is computed by
taking the minmod of the electric field on the nearby interfaces as
specified in Eq. (53) in [35].

VI. Generalized Coordinates

To tackle problems in which the mesh becomes nonorthogonal
when body fitted, the proposed coupled drift-diffusion and Navier–
Stokes system outlined in the previous section can be converted from
Cartesian to generalized “curvilinear” coordinates following the
conservative method of Viviand [58] and Vinokur [59]. After some
algebra, it can be demonstrated that, in generalized coordinates, the
coupled system Eq. (10) becomes

Z
∂U⋆

∂t
�

X3
i�1

∂F⋆
i

∂Xi

�
X3
i�1

∂
∂Xi

D⋆
i U

⋆ −
X3
i�1

X3
j�1

∂
∂Xi

�
K⋆

ij

∂G
∂Xj

�

�
X3
i�1

Y⋆
i

∂H
∂Xi

� S⋆ (36)

where U⋆ � ΩU, where S⋆ � ΩS and where

F⋆
i � Ω

X3
m�1

Xi;mFm (37)

Y⋆
i � Ω

X3
m�1

Xi;mYm (38)

D⋆
i �

X3
m�1

Xi;mDm (39)

K⋆
ij � Ω

X3
m�1

X3
n�1

Xj;mXi;nKmn (40)

In addition, any spatial derivative that appears within the source
term vector S⋆ is rewritten as

∂
∂xi

�·� �
X3
m�1

Xm;i

∂
∂Xm

�·� (41)

In the latter, Ω stands for the inverse of the metric Jacobian, while
Xi;j stands for the partial derivative of Xi with respect to xj.
Expressions for these two terms in two and three dimensions can be
found in the appendix of Ref. [57].

VII. Block-Implicit Integration

The system of transport equations presented earlier consists of the
charged species transport equations along with the neutrals mass,
momentum, and energy equations in coupled form. Integrating such a
system of equations must be done with care as it involves a large
disparity between the physical time scales. Should an explicit
integration strategy be used, the integration step lengthwould have to
be set to excessively small values to prevent divergence toward
aphysical states. Using a scalar implicit method (i.e., integrating
implicitly the transport equations sequentially keeping the others
frozen) would also lead to some difficulties due to the strong
dependence between the transport equations. Rather, to enable the
use of aerodynamic-scale integration step lengths, it is found
necessary to integrate all transport equations conjunctly through a
block-implicit method as is commonly done when solving
chemically reacting flows.
For this purpose, it is necessary to first derive the delta form of the

governing equations. Such can be done starting from Eq. (36)
evaluated at the pseudotime level n� 1, adding a pseudotime
derivative, and subtracting/adding the discretized residual evaluated
at pseudotime level n. We thus obtain the delta form of the governing
equations:
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ΓnΔnU⋆ �
Xnd
i�1

�
δXi

ΔnF⋆
i � δXi

Δn�D⋆
i U

⋆� � Δn�Y⋆
i δXi

H� −
Xnd
j�1

δXi
Δn�K⋆

ijδXj
G�

�

− ΔnS⋆ � Δn�ZδtU⋆� � −Rn
Δ (42)

The latter equation involves solving a large banded matrix, which
would require too much computer memory storage and CPU time for
multidimensional problems. One alternative is to approximate the
delta form with a multiplication of one-dimensional operators, a
technique usually referred to as approximate factorization [60,61] or
alternate direction implicit (ADI). However, contrarily to the scalar
approximate factorization in [60], we apply here the approximate
factorization to the matrix form of the equations (as opposed to each
scalar equation independently of the others), hence resulting in a
block implicit method (see [62,63] pp. 318–319] for a discussion of
block-implicit algorithms):

�Ynd
i�1

�
I � �Γn�−1δXi

�
∂F⋆

i

∂U⋆

�
n

� �Γn�−1δXi
D⋆n

i

� �Γn�−1Y⋆n

i δXi

�
∂H
∂U⋆

�
n

− �Γn�−1
Xnd
j�1

δXi

�
K⋆

ijδXj

∂G
∂U⋆

�
n

− δ1i�Γn�−1
�
∂S⋆

∂U⋆

�
n

� δ1i�Γn�−1Zn

�
∂�δtU⋆�
∂U⋆

�
n
�	

ΔnU⋆ � −�Γn�−1Rn
Δ (43)

For K⋆, Y⋆, Z, and D⋆ frozen within one iteration, Eq. (43)
corresponds to Eq. (42) if, when the multiplication is expanded, all
terms involving �Γn�−2 or �Γn�−3 are neglected. Such is a valid
approximation as long as the pseudotime step used within the
preconditioning matrix remains relatively small.
It is noted that the linearization matrices and the difference

operators within Eq. (43) are for themost part symbolic. For instance,
δXi

D⋆n
i stands for the linearized form of the flux vector splitting

discretization outlined in Eq. (32), while ∂F⋆
i ∕∂U⋆ stands for the

Jacobians involved in the linearization of the Roe flux difference
splitting scheme. Similarly, the linearization matrix ∂S⋆∕∂U⋆ does
not include the derivatives of all termswithin the source term vectorS
with respect to the vector of conserved variables U. Specifically,
while all chemical reactions are linearized, the Townsend ionization
rates are linearized here under the condition of constant current for
higher stability [35]. Other source terms within S that must not be
linearized for stability purposes are the temperature gradients, the
turbulence kinetic energy production term, the Coulomb and Lorentz
body forces, and the positive terms part of β�k μkρkρc∕ϵ0 (see Sec. 7 in
[35] for more details).
Within the delta form, the preconditioning matrix Γ is set equal to

Γ � 1

Δτ

2
66666666664

�βn1 � ζiΓβ
i
1 � βe1 min �ζiΓ; ζeΓ∕αee��−1

..

.

�βnns � ζiΓβ
i
ns � βens min�ζiΓ; ζeΓ∕αee��−1

1

..

.

1

3
77777777775

D

(44)

where ζiΓ and ζeΓ are user-defined constants typically set to 0.1 and
0.001, respectively. Setting the local pseudotime stepΔτ equal to the
minimumCourant-Friedrichs-Lewy (CFL) condition as is often done
would lead to slow convergence of the viscous terms within the
laminar sublayer of the turbulent boundary layer due to the high
aspect ratio of the grid cells in that region. Here, we rather set the
pseudotime step to the geometric average between the maximum and
the minimum CFL conditions within all dimensions:

Δτ � CFL min
3

i�1

�
Δxi

jVn
i j � a

�
0.5

max
3

i�1

�
Δxi

jVn
i j � a

�
0.5

(45)

Taking the geometric average between the maximum and
minimum CFL conditions keeps the local pseudotime step within
high aspect ratio cells to a value that, while being lower than in cells
with an aspect ratio of 1, is not so low as to induce slow convergence.
It is noted that, should the viscous terms ∂∕∂Xi�K⋆

ij∂∕∂XjG� not be
linearized and treated in a fully implicit manner as done herein, they
would lead to stability issues should the pseudotime step be set
significantly higher than the minimum CFL condition. But because
the viscous terms are treated here in a fully implicit manner by
avoiding spatial derivatives within the Jacobians (as is common in
other compressible flow codes), they do not lead to stability issues at
any CFL number, and this permits us to set the local pseudotime step
higher than usual within high aspect ratio cells, hence leading to
faster convergence.
Effectively, the preconditioner Γ is such that within regions of

quasi neutrality or within the anode sheath the electrons would be
subject to the same pseudotime step as the ions (i.e., ζiΓΔτ). Within
the cathode sheath, however, the pseudotime step of the electrons is
progressively decreased until it reaches the value ζeΓΔτ near the
cathode. At least for the problems shown hereafter, such is found to
yield optimal convergence rates.
Meanwhile, for the potential equation based onOhm’s law, Eq. (9),

the pseudotime step is set as suggested in [36],

Δτϕ � Lc · min
3

i�1

�
Δxi

σref � σ

�
(46)

with Lc some characteristic length scale typically set to the average
distance between the electrodes and σref some reference conductivity
typically given a value of 0.003 S∕m.
While here it is considered crucial for high computational

efficiency to integrate the charged species transport equations in
coupled form with the neutrals transport equations, it is also found
that the opposite is truewith respect to the potential equation. Having
experimented with both a coupled and uncoupled approach, we have
found that integrating the potential equation shown in Eq. (9) in
coupled form with the fluid equations outlined in Eq. (10) would
result in lower, not higher, computational efficiency. This is due, in
part, to the fluid transport equations (for either the neutral or charged
species) not depending directly on the potential but rather on the
electric field that is itself obtained from the spatial gradients of the
potential. Because of this, the Jacobians of the fluid equations used
within the block-implicit ADI scheme do not depend on the potential
equation, and therefore their update in pseudotime is unaffected
whether the potential is integrated in coupled form or not. On the
other hand, integrating the potential through a separate module leads
to one major advantage: several iterations of the potential can be
performed for one iteration of the coupled drift-diffusion andNavier–
Stokes system. For many problems, this leads to a substantial
reduction in the number of iterations needed to converge the fluid
transport equations and, hence, to improved computational
efficiency. Indeed, the total CPU time necessary to obtain a
converged solution depends strongly on the iteration count of the
fluid transport equations but relatively little on the iteration count of
the potential equation.
Thus, the strategy recommended (and adopted for the test cases

shown in the following) is to integrate the potential equation (9)
through a scalar approximate-factorization algorithm three to six
times, keeping the other properties constant, followed by the
integration of the fluid equations (10) through a block-implicit
strategy keeping the potential constant and repeating the latter
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process until convergence is attained. As will be demonstrated
through the test cases in what follows, due to the lack of stiffness of
the recast computationally efficient drift-diffusion model used
herein, such an approach is highly efficient and converges in more or
less the same number of iterations as nonionized aerodynamics.

VIII. Code Validation

To verify the validity of the present numerical method, we solved
several problems for which benchmark solutions (i.e., solutions with
minimal grid-induced error) using the standard drift-diffusion model
are available. For instance, we have simulated with the algorithm
outlined herein the multicomponent plasma in the magnetic field test
case outlined in Sec. 9.1 of [36] using the same set of chemical
reactions as in [36]. Such a test case is particularly well suited to
assess the validity of the implementation of the novel computation-
ally efficient drift-diffusion model and potential equation within our
aerodynamics code because it involves a weakly ionized air plasma
with considerable magnetic field effects and in which the negative
ions, the positive ions, and the electrons all play a significant role.
When using a 3602 mesh, themethod proposed herein is seen to yield
contour plots visually indiscernible from those obtained with the
standard drift-diffusion model on the basis of electron density,
negative and positive ion densities, and current density magnitude.
This increases the confidence that the implementation of the charged
species transport equations as well as of the potential equation within
our aerodynamic solver is correct.
Other aspects of the present algorithm that require verification are

the transport equations of the mass, momentum, and energy of the
neutrals along with the transport equations of the turbulence kinetic
energy and its specific dissipation rate. Such have been extensively
validated through various comparisons with exact solutions and
experimental data for a wide range of compressible flows in previous
work (see the validation test cases in [64,65], for instance).
Further, as will be discussed in the following when analyzing the

results of some test cases relevant to plasma flow control, results of
sheaths obtained with our numerical method are in close agreement

with those obtained through the one-dimensional drift theory of
cathode sheaths outlined in [66].
Thus, because the in-house-developed plasma aerodynamics code

used herein has beenvalidated against multiple benchmark solutions,
experimental results, and theoretical predictions related to both
plasma sheaths and aerodynamic flows, we are fairly confident in the
correctness of the computationally efficient set of equations
presented in this paper as well as in its implementation within our
flow solver.

IX. Test Cases

To test the capabilities of the proposed system of equations, some
test cases of relevance to plasma aerodynamics are now considered.
The first one consists of a glow discharge interacting with a turbulent
boundary layer, and the second one corresponds to an e-beam ionized
Faraday generator within a turbulent channel including the solution
of the nonneutral cathode and anode sheaths. For both cases, the
species consist of e−,O−

2 ,O
�
2 ,N

�
2 ,N,O,N2, andO2 interacting with

each other according to the set of reactions outlined in Table 1.

A. Glow Discharge Interacting with Boundary Layer

The first test case considered here consists of a supersonic air flow
entering a channel at a speed of 600 m∕s, a temperature of 300K, and
a pressure of 10 kPa. In the middle of the channel, the air is ionized
through electron beams as depicted in Fig. 1, while the potential
difference between the top and the bottomwalls is fixed to 700 V. On
the electrodes, the secondary emission coefficient γ is set to 0.1, and
the neutrals temperature is fixed to 300 K. An orthogonal mesh of
120 × 120 nodes is used, with some clustering near the electrodes
such that the distance between the boundary and the near-boundary
node is 30 μm.
Such a problem is of particular interest to plasma flow control due

to the large Coulomb force induced in the boundary layer. Indeed,
because the conductivity within the cathode sheath (near the bottom
electrode) is much lower than within the quasi-neutral region (in the
center of the domain) or in the anode sheath (near the top electrode),
most of the voltage drop between the electrodes occurs within the
cathode sheath. As can be seen from the electric field contours in
Fig. 2, this leads to a particularly strong electric field within the
cathode sheath pointing toward the wall. To satisfy Gauss’s law, a
change in the spatial derivative of the electric field needs to be
accompanied by a net positive charge density (see Fig. 2c). Because
the Coulomb force corresponds to the product of the electric field
and the net charge density, this thus leads to a net force pointing
toward the wall. What is particularly interesting here is that the
thickness of the cathode sheath is commensurate in size with the
thickness of the turbulent boundary layer. Thus, the Coulomb force
acting on the neutrals due to the presence of the discharge can have an
impact not only on the laminar sublayer within a few tenths of
micrometers from thewall but also overmost of the buffer region and
outer regions of the turbulent boundary layer. Such a wall-oriented
force could thus be used to prevent the boundary layer from
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Fig. 1 Problem setup for both test cases; all dimensions in millimeters.
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Fig. 2 Neutrals’ x-velocity component, net charge density, and y component of the electric field near the cathode.
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separating or from becoming turbulent, resulting in a significant
improvement of the aerodynamic performance of the flight vehicle.
Besides being of significance to plasma aerodynamics, such a

problem is particularly well suited to test the performance of our
newly proposed coupled drift-diffusion andNavier–Stokes system of
equations. The coupling between the drift-diffusion and the Navier–
Stokes equations can best be explained as follows. Because of the
Joule heating deposited within the cathode sheath is significant, it
results in a change in both the nonequilibrium vibrational
temperature and the bulk gas temperature, as is apparent from the
temperature contours in Fig. 3. An increase in the bulk gas
temperature itself results in a decrease in the number density of the
plasma, affecting in the process the Townsend ionization rates, the
mobilities, and the conductivity on which the charged species
transport equations and potential equation depend. Thus, the electron
and ion transport equations cannot be solved independently of the
Navier–Stokes equations in this case because the number density of
the plasma bulk is not known a priori. The Navier–Stokes equations
can also not be solved independently of the charged species equations
because the Joule heating distribution as well as the Coulomb force
distribution is not given a priori. Rather, both sets of equations
depend significantly on each other and need to be solved conjunctly.
The addition of the drift-diffusion transport equations to the

neutrals mass, momentum, and total energy transport equations can
be seen in Fig. 4 not to affect considerably the convergence history.
Specifically, to obtain six orders of magnitude of convergence, the
coupled drift-diffusion and Navier–Stokes system is seen to require
only two times more iterations than the standalone Navier–Stokes
system. We focus here on the first six orders of magnitude of
convergence because such is generally deemed sufficient to obtain a
converged solution. Further pursuing the convergence beyond six
orders has been verified not to alter the solution considerably. To
enable a fair comparison between both sets of equations, the user-
defined CFL parameter is set initially to the same value of 0.01 for
both systems and then increased to 4.0 as rapidly as permitted by the
nonlinear stability restrictions (i.e., at a rate of 20% per iteration for
the standalone Navier–Stokes system and at a rate of 1% per iteration
for the coupled drift-diffusion and Navier–Stokes system). It is noted
that, while the standalone Navier–Stokes system does include the
Wilcox two-equation turbulence model and temperature-dependent

specific heats, it does differ from the coupled drift-diffusion and
Navier–Stokes system on the following four points: 1) it does not
include the electromagnetic forces and energy source terms in the
momentum and energy transport equations; 2) it does not include the
solution of the electron and ion transport equations; 3) it does not
include electron beam ionization or any other chemical reaction; and
4) it is limited to theO2 andN2 species and does not include the other
six species. Perhaps because of the considerably reduced complexity
of the physical model, the standalone Navier–Stokes system exhibits
faster convergence. Nonetheless, the proposed coupled drift-
diffusion and Navier–Stokes system does hold its own and can be
converged almost as rapidly as conventional nonionized aero-
dynamics for this test case.

B. Glow Discharge in Magnetic Field

We now repeat the previous test case in which a glow discharge
interacts with a turbulent boundary layer but in the presence of an
externally applied magnetic field. The magnetic field is oriented
perpendicular to the computational domain, points in the positive z
direction, and is given a magnitude of 0.25 T. Because the magnetic
field vector, the current density vector, and the neutrals velocity
vector are all perpendicular to each other, such a problem is of
importance because it constitutes a so-called Faraday-type MHD
generator that generates power through the Lorentz force.
Raising the magnetic field to values higher than the 0.25 T used

herein prevents convergence to the steady state because it leads to
unsteady waves propagating within the anode sheath and the quasi-
neutral region. This should not be surprising. As was observed in
[29], using a similar chemical model as used herein, air plasmas with
the electron temperature in nonequilibrium become unsteady in the
quasi-neutral region when the Hall parameter for the electrons
approaches or exceeds 1. Recalling that the electron Hall parameter
corresponds to the product between the electron mobility and the
magnitude of themagnetic field, and noting that the electronmobility
varies between 1.8 and 5 m2∕Vswithin the e-beam ionized region in
this case, the Hall parameter for the electrons reaches 1.2 when the
magnetic field is set to 0.25 T. Raising the magnetic field to higher
values would hence lead to an electron Hall parameter significantly
exceeding1 and hence to unsteady behavior.
Various checks were made to ensure that the numerical solution

obtained herein was free of error and was in accordance with
previously obtained data. For instance, the voltage drop within the
sheath near the cathode (170 V) as well as the cathode sheath
thickness (0.2mm)were verified tomatch those obtained through the
one-dimensional exact solution outlined in [66] on page 180. In doing
the latter comparison, the cathode sheath thicknesswas defined as the
region near the cathodewhere the current ismostly ionic and does not
include the part of the sheath where the current is mostly electronic
and where ambipolar effects are significant. It was also verified that
the integral of the current density is conserved from one electrode to
the other as should be the case in a plasma in the steady state subject to
only one electrode pair. Further, it was verified that the current
density streamlines (see Fig. 5) are inclined at the angle expected at a
Hall parameter of ∼0.4.
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Fig. 3 Neutrals’ temperature, vibrational temperature, and electron temperature near the cathode in Kelvin.
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As in the previous test case, the proposed coupled drift-diffusion
and Navier–Stokes system is seen to converge five to six orders of
magnitude in about 1000 iterations, which is commensurate with the
number of iterations needed to converge the standalone Navier–
Stokes system (see Fig. 6). Although the rate of convergence slows
down when the iteration count reaches 1300 or so, such is not a
particular source of concern as it is verified that iterating the system
beyond this point does not lead to a significant change in the solution.
The slowdown of the residual convergence history after five to six
orders is not unique to this system of equations. Such is in fact
commonly encountered when using approximate factorization (also
known as ADI) to solve problems with a large discrepancy between
the time scales originating either from the physical model or from the
mesh spacing. Although this issue could perhaps be overcome
through the use of other integration strategies such as Jacobian-Free
Newton Krylov (JFNK), for instance, there may be difficulties in
deploying the latter to a chemically reacting system of equations as
used herein. Further, for many problems of interest in aerodynamics,
iterating beyond four to five orders of convergence rarely changes
appreciably the solution and is hence computing time wasted that
could be put to better use by solving more refined meshes.

X. Conclusions

Anew system of equations presented here permits for the first time
the coupled integration of the electron and ion transport equations
with the neutrals mass, momentum, and total energy transport
equations. Such is made possible through the use of a recently
developed recast of the drift-diffusionmodel that exhibits no stiffness
(when solved with block-implicit methods) and can hence be
integrated with time steps similar in size to those used to integrate
nonionized aerodynamic flows. The coupled system includes
nonequilibrium of the nitrogen vibrational energy and of the electron
energy, real gas effects, multiple types of positive ions and negative

ions, and extra transport equations to account for the transport of the
turbulence kinetic energy and its specific dissipation rate.
Some test cases relevant to plasma aerodynamicswere presented in

which an air plasma interacts with a compressible supersonic
turbulent boundary layer. The test cases were set up so that the
thickness of the nonneutral sheath near the cathode was
approximately the same as the one of the turbulent boundary layer,
which resulted in a significant dependence of the boundary layer on
the charged species and vice versa. It was then demonstrated that the
proposed coupled drift-diffusion and Navier–Stokes system can be
converged to the steady state in less than a couple of thousand
iterations, which is commensurate with the number of iterations
needed to solve the standalone Navier–Stokes equations with no
plasma or chemistry effects. Such corresponds to a hundredfold or
more reduction in the number of iterations to reach convergence
compared to previous attempts at solving plasma flow control using
the drift-diffusion model.
The proposed coupled system of equations provides yet another

computational advantage by limiting errors associated with solving a
set of equations with two different integration strategies. Indeed, the
current approach integrates all transport equations (either related to
the charged species or the neutrals) using one integration strategy that
is in contrast to previous loosely coupled simulations of plasma flow
control in which the charged species transport equations were solved
using an integration process separate from the one used to integrate
the neutrals transport equations. Using two integration processes for
transport equations that depend on each other can be particularly
difficult to accomplish at the discrete level and lead to errors in the
preservation of monotonicity or the conservation of the fluxes. Such
issues are avoided here because all transport equations are solved
conjunctly.
Because the proposed coupling between the drift-diffusion and the

Navier–Stokes equations offers major computational advantages
with no associated drawback, it is highly recommended as a
substitute to the loosely coupled approach of solving the neutrals and
the charged species transport equations using two integration
strategies. Such not only avoids a cumbersome dual-integration
process leading to possible monotonicity or conservation errors but
yields an estimated 100-fold reduction in computational effort.

Appendix: Charged Species Joule Heating

The Joule heating due to the presence of electrons and ions in a
plasma corresponds to the difference between the work done on the
charged species in the lab reference frame and the work done by the
charged species on the neutrals also in the lab reference frame,

QJ �
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|






























{z






























}
work done on the charged species in the lab frame

−
�
ρcE� J × B −

Xncs
r�1

∇Pr

�
· Vn

|


























{z


























}
work done by the charged species on the neutrals in the lab frame

(A1)

30

30

30

40

10

10

0 50 100 150 200
0

10

20

30

40

50

x , mm

y
,m

m

a) J contours, A/m2

0 50 100 150 200
0

10

20

30

40

x , mm

b) J streamlines

1E-08

5E-08

5E-08

5E-08

1E-08

0 50 100 150 200
0

10

20

30

40

7E-8

x , mm

c) wN+
2

contours

Fig. 5 Current density magnitude, current density streamlines, andN�
2 ionmass fraction contours for the glow discharge in the magnetic field test case.
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where ncs is the number of charged species. After substituting the
current density J ≡

Pncs
r�1 CrNrV

r and the net charge density ρc ≡Pncs
r�1 CrNr and simplifying, we obtain

QJ �
Xncs
r�1

�CrNrE� CrNrV
r ×B − ∇Pr� · �Vr − Vn� (A2)

Then, from the drift-diffusion momentum equation used herein,
the first term on the right-hand side can be expressed as (see Eq. (2) in
Ref. [36])

CrNr�E� Vr ×B� − ∇Pr �
jCrjNr

μr
�Vr − Vn� (A3)

Substitute the latter in the former, and reformat:

QJ �
Xncs
r�1

jCrjNr

μr
�Vr − Vn� · �Vr − Vn� (A4)

From the latter, it is obvious that the Joule heating associated with
the rth charged species corresponds to

Qr
J �

jCrjNr

μr
jVr − Vnj2 (A5)

while the total Joule heating corresponds to the sum of the Joule
heating of each charged species:

QJ �
Xncs
r�1

Qr
J (A6)
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