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The first-order multidimensional flux difference splitting method (Parent, B., “Multidimensional Flux Difference

Splitting Schemes,” AIAA Journal, Vol. 53, No. 7, 2015, pp. 1936–1948) is here extended to second-order accuracy

through the use of limiters. The proposed second-order flux functions are such that they collapse to the first-order

multidimensional flux difference splitting stencil in the vicinity of discontinuities and tend toward second-order finite

difference stencils in smooth parts of the solution. Various test cases of interest to hypersonic flight including

supersonic ramp injectors, shock-induced boundary-layer separation, and hypersonic viscous layers reveal that the

proposed method achieves as much as a four times increase in resolution per dimension over its first-order

counterpart or over the second-order symmetric total variation diminishing schemes. When integrated through a

block-implicit approach, this entails asmuch as a 40-fold increase in computational efficiencywhile not compromising

the symmetric total variation diminishing reliable convergence to steady-state, essentially monotone solution, and

high resolution of boundary layers.

Nomenclature

A, B, C = Jacobians of F, G, andH with respect to U
a = speed of sound
a, b, c = wave speed along x, y, and z
D = Jacobian of U with respect to Q
d = number of dimensions
E = e� 0.5 · v2, total specific energy
e = specific energy
F, G,H = convective flux vector along x, y, and z
f, g, h = convective flux along x, y, and z
I = identity matrix
i, j, k = grid indices
L = left eigenvector matrix
M = vector of the limited characteristic variables
N = vector of cross derivatives
Pemax = maximum cell Peclet number allowed when

conditioning the eigenvalues
PeΔx = cell’s Peclet number along x
Q = vector of primitive variables
Reedge = edge Reynolds number
s = characteristic length of a cell
t = time coordinate
U = vector of conserved variables
u = conserved variable
v = velocity vector
x, y, z = Cartesian coordinates
Δx, Δy, Δz = grid spacing along x, y, and z
δx�·� = discretization of ∂x�·�
∂x�·� = partial derivative along x
ζ = entropy correction factor
ζd = entropy correction factor for Jacobians on

denominator of the flux function
Θ = nondimensional matrix associated with the cross-

difference terms
Λ = eigenvalue matrix
μ = viscosity

μ⋆ = effective viscosity including turbulence eddy
viscosity

ρ = mass density
σ = spectral radius of flux Jacobian
Φ = limiter function matrix acting on the dissipative

terms
Ψ = limiter function matrix acting on the cross-

difference terms

Subscripts

r = rth row of vector
r, r = rth row and rth column of diagonal matrix

I. Introduction

H YPERSONIC viscous flows are a class of flowfields that are
particularly challenging to simulate. Various difficulties arise in

the hypersonic range that are nonexistent at lower speeds such as
carbuncle phenomena, difficulty to capture shear stresses or heat
fluxeswithin boundary layers, or loss of positivity ormonotonicity in
the vicinity of strong shocks.
A popular flux discretization strategy for hypersonic flow is the

Roe flux difference splitting (FDS) scheme [1] turned second-order
accurate through total variation diminishing (TVD) limiters applied
to the characteristic variables [2] or to the primitive variables [3].
Such a discretization strategy is often preferred perhaps because of its
following desirable attributes.
1) It yields essentiallymonotonic solutions, hence being capable to

capture shock waves and other discontinuities withminimal spurious
oscillations.
2) It can capture contact surfaces with minimal dissipation, hence

being particularly well suited to solve viscous flows.
3) When noncompressive limiters are used, it exhibits good

convergence characteristics, permitting the residual to be driven
down to machine accuracy for a wide range of problems.
4) It is expressed in general matrix form, hence being straight-

forward to linearize or to extend to any system of conservation
laws.
5) Its finite volume form permits fast convergence to steady state

when used in conjunction with convergence acceleration techniques
such as multigrid, block alternate-direction implicit (ADI), lower–
upper symmetric Gauss–Seidel, etc.
The Roe flux difference splitting scheme turned second-order

through TVD limiters is not without its flaws, however. One of
its well-known drawbacks is its marked decrease of resolution
when extended to multiple dimensions. Indeed, because the
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stencil was originally derived in one dimension, and because it is
extended to multiple dimensions through dimensional splitting
(by splitting the derivatives along each dimension and
discretizing the so-obtained one-dimensional derivatives using
one-dimensional operators), it is not genuinely multidimensional
and hence leads to excessive dissipation of waves traveling
obliquely to the grid lines.
To overcome the excessive dissipation of the dimensionally split

stencil when simulating multidimensional problems, some remedies
have been suggested. One such remedy is the rotation-interpolation
approach, which consists of calculating the fluxes in a coordinate
system that is rotated with respect to the grid instead of one aligned
with the grid as in the dimensional splitting. Such a strategy has been
shown to increase significantly the resolution when solving
expansion fans and shock waves [4]. However, because the rotated
frame of reference must be the same for all variables (the frame of
reference is typically rotated following the flow velocity), not all
waves can be captured with high resolution, and the use of the
rotation-interpolation method can be a mixed blessing; whereas the
resolution of expansion fans and shocks is enhanced, the resolution of
shear waves is diminished [5]. Another attempt at extending the Roe
approximate Riemann solver to multiple dimensions that has shown
more promise is “residual distribution” as first proposed in [6]. The
latter consists of distributing the flux integral at the cells interface (the
residual) in a downwind manner, with the direction of downwinding
being parallel to the waves and differing for each flux component.
Although such has been demonstrated to yield a significantly
superior resolution (especially for subsonic flows), it does also come
with some disadvantages such as exhibiting convergence hangs or
yielding a significantly lower resolution when simulating hypersonic
flows [7].
Yet another genuinely multidimensional extension of FDS to

multiple dimensions is through the use of the Cauchy–Kowalevski
procedure. By modifying the Cauchy–Kowalevski procedure such
that the time step that naturally appears within the flux function is
replaced by a characteristic time step, some variants of FDS can be
derived that are both genuinely multidimensional and in finite
volume form. For instance, in [8], Huang and Lerat derive a
multidimensional Roe scheme using the Cauchy–Kowalevski
procedure that exhibits considerably higher resolution than the
dimensionally split method for many problems of interest. However,
the Huang–Lerat method introduces significant overshoots and
undershoots of the properties in the vicinity of shock waves when the
latter are not aligned with the mesh. Such was remedied in [9], where
it was demonstrated that an essentially monotone solution can be
obtained by splitting the cross-derivative terms among the several
dimensions such that the coefficients of the cross derivatives remain
small compared to the coefficients of the normal derivatives. Several
test cases were then performed demonstrating a two-fold increase in
resolution per dimension compared to the dimensionally split
approach. The multidimensional flux difference splitting scheme
developed in [9] was, however, first-order accurate.
In this paper, the multidimensional FDS [9] is extended to second-

order accuracy such that the discretization stencil collapses to its first-
order form in the vicinity of shocks or other discontinuities and
becomes second-order accurate in smooth flow regions. Several test
cases at highMach number are then presented to determine the gains
in resolution of the proposed multidimensional method to the
commonly used dimensionally split second-order TVD schemes.

II. First-Order Multidimensional Flux Difference
Splitting

As demonstrated in [9], a first-order-accurate multidimensional
discretization of the wave equation

∂u
∂t

� ∂f
∂x

� ∂g
∂y

� ∂h
∂z

� 0 (1)

can be derived using the Cauchy–Kowalevsky procedure by splitting
the cross-derivative terms among the several dimensions such that the

coefficients of the cross derivatives remains small compared to the
coefficients of the normal derivatives. After some algebra, it was
demonstrated that this would yield the following discretization
equation:

un�1 − un

Δt
� fi�1∕2 − fi−1∕2

Δx
� gj�1∕2 − gj−1∕2

Δy
� hk�1∕2 − hk−1∕2

Δz
� 0

(2)

with the fluxes at the interfaces equal to

fi�1∕2 �
fi�1 � fi

2
− jaji�1∕2

ui�1 − ui
2

−
�

aΔybΔxδyu
jajΔy� jbjΔx

�
i�1∕2

−
�

aΔzcΔxδzu
jajΔz� jcjΔx

�
i�1∕2

(3)

gj�1∕2 �
gj�1 � gj

2
− jbjj�1∕2

uj�1 − uj
2

−
�

aΔybΔxδxu
jajΔy� jbjΔx

�
j�1∕2

−
�

cΔybΔzδzu
jcjΔy� jbjΔz

�
j�1∕2

(4)

hk�1∕2 �
hk�1 � hk

2
− jcjk�1∕2

uk�1 − uk
2

−
�

aΔzcΔxδxu
jajΔz� jcjΔx

�
k�1∕2

−
�

cΔybΔzδyu
jbjΔz� jcjΔy

�
k�1∕2

(5)

and where a ≡ ∂f∕∂u, b ≡ ∂g∕∂u, c ≡ ∂h∕∂u, where the notationΔx
refers to the grid spacing along x, whereas δxu refers to a
discretization stencil approximating the partial derivative ∂xu.
Contrary to previous stencils derived from Cauchy–Kowalevski, the
latter flux functions yield an “essentiallymonotone” solution (i.e., the
solution may exhibit small spurious oscillations in the vicinity of
discontinuities, but such overshoots or undershoots are quite small
compared to the jump within the discontinuity.
We now wish to extend the latter to a system of conservation laws

of the form:

∂U
∂t

� ∂F
∂x

� ∂G
∂y

� ∂H
∂z

� 0 (6)

where U is the vector of conserved variables, and F, G, H are the
convective flux vectors along x, y, z, respectively. We could extend
the scalar flux functions outlined in Eqs. (3–5) to a system simply by
replacing the scalar coefficients by their matrix analogues, as was
done in [9]. Whereas such a strategy was shown successful in
yielding monotone solutions for subsonic and supersonic flows, it
was also found to yield near shock waves some overshoots and
undershoots that were of importance when the Mach number was in
the hypersonic range (i.e., when theMach number is greater than 5 or
so). Because such nonmonotonicity near discontinuities becomes
amplifiedwhen the scheme is extended to second-order accuracy, it is
here found necessary to remediate this problem.
To do so, first recall that the flux functions used herein are derived

from a modified Cauchy–Kowalevski procedure, which is such that
the coefficient of the cross-derivatives remains small compared to the
one of the normal derivatives. Thus, small spurious oscillations
introduced by the cross-derivatives are quickly damped by the
dissipation originating from the normal derivatives. Although such a
strategy is satisfactory for subsonic and supersonic flows, it is not as
effective in the hypersonic range due to the temperature (and
indirectly the pressure) being obtained from the internal energy,
which itself is obtained from the difference between the total energy
and the kinetic energy. In hypersonic flows forwhichmost of the total
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energy is kinetic, small amounts of nonmonotonicity on the total

energy lead to orders-of-magnitude larger spurious oscillations on

the temperature and pressure. Because such amplified oscillations

associated with the cross-derivatives cannot be damped sufficiently

rapidly by the dissipation introduced by the normal derivatives,

significant overshoots and undershoots appear near shocks or other

discontinuities.
A solution to this problem is to take the cross-derivatives of

the primitive variables rather than to take the cross-derivatives of the

conserved variables. Using primitive variables instead of the

conserved variables is a strategy that is commonly used within

the context of the monotone upwind schemes for scalar conservation

laws (MUSCL) evolution-reconstruction procedure [3]. However,

there is no evolution-reconstruction taking place in this case. Thus,

we need to express the cross derivatives as a function of primitive

variables by first noting that, ifU can be expressed as a function ofQ,

the following holds:

�δyU�i�1∕2 � D�Ui�1∕2�δyQ (7)

whereQ is the vector of primitive variables, and whereD is a square

matrix composed of the derivatives of U with respect to Q:

D�U� ≡ ∂
∂Q

U�Q� (8)

To obtain essentially monotone solutions for hypersonic flows, it

is important that the vector of primitive variables Q includes all

independent determinative properties, with a determinative

property being here defined as a property that must necessarily be

positive for the system to be within physically valid bounds. For the

perfect-gas Euler equations for which the vector of conserved

variables is equal toU � �ρ; ρvx; ρvy; ρvx; ρE�T , we thus here set the
primitive variables vector to Q � �ρ; vx; vy; vz; e�T . Then, the

Jacobian D becomes

D �

2
66664

1 0 0 0 0

vx ρ 0 0 0

vy 0 ρ 0 0

vz 0 0 ρ 0

E ρvx ρvy ρvz ρ

3
77775 (9)

Thus, an essentiallymonotone first-order accurate flux difference

splitting scheme can be obtained for a system of conservation laws

starting from the scalar form outlined in Eqs. (3–5), substituting the

scalar coefficients by their matrix counterparts, and modifying the

discretization operators for the cross-derivatives as outlined in

Eq. (7). This yields the following multidimensional FDS first-order

flux functions:

Fi�1∕2 �
Fi�1 � Fi

2
− jAji�1∕2

Ui�1 − Ui

2

− �AΔyΘyxDδyQ�i�1∕2 − �AΔzΘzxDδzQ�i�1∕2 (10)

Gj�1∕2 �
Gj�1 �Gj

2
− jBjj�1∕2

Uj�1 − Uj

2

− �BΔxΘxyDδxQ�j�1∕2 − �BΔzΘzyDδzQ�j�1∕2 (11)

Hk�1∕2 �
Hk�1 �Hk

2
− jCjk�1∕2

Uk�1 − Uk

2

− �CΔxΘxzDδxQ�k�1∕2 − �CΔyΘyzDδyQ�k�1∕2 (12)

whereA,B, andC correspond to the convective flux Jacobians along
x, y, and z, respectively (i.e., A ≡ ∂F∕∂U, B ≡ ∂G∕∂U, etc.), and
where jAj, jBj, and jCj stand for

jAj ≡ L−1�A�jΛ�A�jL�A� (13)

jBj ≡ L−1�B�jΛ�B�jL�B� (14)

jCj ≡ L−1�C�jΛ�C�jL�C� (15)

with L�·�, Λ�·�, and L−1�·� the left eigenvector matrix, the
eigenvalue matrix, and the right eigenvector matrix of the Jacobian
�·�, respectively. In [9], Θxy was set as

Θxy ≡ �jAxjΔy� jAyjΔx�−1AxΔy (16)

with Ax ≡ ∂F∕∂U, Ay ≡ ∂G∕∂U, etc. However, such involves a
matrix inversion, which becomes expensive when the number of
fluxes becomes large. At least for hypersonic flows, we find that
such matrix inversion can be avoided while not compromising
significantly on the resolution of the stencil by rather setting Θxy to

Θxy ≡
vxΔy

jvxjΔy� jvyjΔx
I (17)

where v is the flow velocity vector, and I is the identity matrix. For
all results shown in this paper, the latter formulation is chosen.

III. Extension to Second-Order Accuracy

We here seek second-order accurate extensions of the first-order
multidimensional FDS scheme presented in the previous section that
maintain the desirable properties of the first-order scheme. That is,
the second-order stencils should be such that 1) they lead to
essentially monotonic solutions even in the vicinity of strong shocks,
2) they do not induce convergence hangs for a wide range of flows
from the subsonic to the hypersonic regime, 3) they can capture
viscous layers with minimal dissipation, and 4) they are expressed in
finite volume form.
To ensure that the converged solution is free of significant spurious

oscillations, wewill here follow a similar strategy as when extending
the dimensionally split Roe scheme to second-order accuracy
through TVD limiters. That is, the method should be such that it
reverts to the first-order scheme in the vicinity of shock waves and
becomes a second-order accurate stencil in smooth flow regions.
Effectively, this entails that the terms added to the first-order FDS
stencil needed to reach second-order accuracy should be limited such
that they are progressively reduced as the property gradients increase.
Further, similar to the first-order flux functions outlined in the

previous section, which collapse to the Roe schemewhen there are no
gradients in the second and third dimensions, it is desired that the
multidimensional second-order flux functions proposed in this
section collapse to the TVD schemes for one-dimensional problems.
We here avoid the use of compressive TVD limiters (such as Van

Leer, superbee, van Albada, etc.) either deployed to all flux
components or to only one component as in [10] because they often
lead to convergence hangs. Although convergence stalls associated
with compressive limiters can be prevented by not limiting entirely
the second-order terms, such yields solutions tainted with significant
spurious oscillations even in the transonic regime where the shock
waves are weak [11]. Because both monotonicity of the solution and
convergencewithout stall are here deemed important properties of the
numerical method, we hence use exclusively noncompressive
minmod limiters, which allow the residual to be converged down to
machine accuracy for a wide range of problems.
Some flux functions that do satisfy the aforementioned

requirements are the following:
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Fi�1∕2 �
1

2
�Fi�1 � Fi� −

1

2
L−1�A�i�1∕2jΛ�A�i�1∕2jM�A�i�1∕2

−
1

4
�AΘyxNj � AΘzxNk�i�1∕2 (18)

Gj�1∕2 �
1

2
�Gj�1 � Gj� −

1

2
L−1�B�j�1∕2jΛ�B�j�1∕2jM�B�j�1∕2

−
1

4
�BΘxyNi � BΘzyNk�j�1∕2 (19)

Hk�1∕2 �
1

2
�Hk�1 �Hk� −

1

2
L−1�C�k�1∕2jΛ�C�k�1∕2jM�C�k�1∕2

−
1

4
�CΘxzNi � CΘyzNj�k�1∕2 (20)

whereM is a vector related to the limited characteristic variables:

M�·�i�1∕2 � �I −Φ�·�i�1∕2�L�·�i�1∕2�Ui�1 − Ui� (21)

where I is the identitymatrix, andΦ is a limiter function composed of

diagonal elements of the form:

�Φ�·�i�1∕2�r;r �
minmod��L�·�i−1∕2�Ui − Ui−1��r; �L�·�i�1∕2�Ui�1 − Ui��r; �L�·�i�3∕2�Ui�2 − Ui�1��r�

�L�·�i�1∕2�Ui�1 − Ui��r
(22)

where the minmod function returns the argument with the lowest

magnitude if all its arguments share the same sign and zero otherwise.
In addition, the cross-derivative vector Nj is limited through a

minmod such that it reverts to its first-order-accurate counterpart in

regions of sharp gradients while vanishing in smooth regions:

�Nj�i�1∕2 � Di�1∕2�I − �Ψj�i�1∕2��Qi;j�1 �Qi�1;j�1

−Qi;j−1 −Qi�1;j−1� (23)

whereΨj is a limiter functiondiagonalmatrixassociatedwith the cross-

derivative terms along j. To preserve monotonicity, it is important that

Ψ (a function used to limit the cross-difference terms) approaches zero

at a similar rate asΦ (a functionused to limit the dissipative terms) does.

ShouldΨ andΦ not vary in close synchronization, spurious oscillations

may formbecause the cross-derivative terms are antidissipative and can

only be fully added to the normal difference terms when the latter

become a first-order upwinded stencil (i.e., when Φ becomes 0). For

this reason, we model the minmod operator within the cross-difference

terms on the one within the dissipative terms as follows:

��Ψj�i�1∕2�r;r �
4 · minmod��Qi;j�1 −Qi;j�r; �Qi;j −Qi;j−1�r; �Qi�1;j�1 −Qi�1;j�r; �Qi�1;j −Qi�1;j−1�r�

�Qi;j�1 �Qi�1;j�1 −Qi;j−1 −Qi�1;j−1�r
(24)

The latter limiter functionwill effectively lead to the cross difference

terms and the dissipative terms being limited in close synchronization

because both limiter functions Ψ and Φ share the following three

attributes: 1) the term on the denominator of the limiter matches the

spatial gradient within the flux function that is eventuallymultiplied by

the limiter; 2) the minmod function is used to limit the gradients; and

3) when the gradients within the minmod function are uniform, the

limiter function becomes 1.

It can be easily shown that, in regions of sharp gradients, the limiter

matricesΦ andΨ become zero, which leads to the second-order flux

functions outlined in Eqs. (18–20) collapsing to the first-order

multidimensional flux functions outlined in Eqs. (10–12). On the

other hand, as the slope of the flow properties becomes constant

through the stencil (as occurs in “smooth” flow regions as themesh is

refined), the limiter matrices Φ and Ψ become equal to the identity

matrix, effectively transforming the flux functions [Eqs. (18–20)]

into centered second-order accurate stencils.

In the absence of gradients along the second and third dimensions,

the flux functions proposed previously canbedemonstrated to collapse

to the Yee symmetric total variation diminishing (STVD) scheme

[2,12], which limits the slope of the characteristic variables while

avoiding a reconstruction of states at the interface. This is in contrast to

the Anderson–Thomas–Van Leer MUSCL reconstruction-evolution

procedure [3], which limits the slope of the primitive variables needed
to reconstruct the left and right states of the Roe Riemann solver at the
interface. It is here preferred not to use a reconstruction evolution
because such can lead to a low resolution of the skin friction and the
surface heat flux associated with hypersonic boundary layers, as will
be outlined in Sec. VI.
Although the proposed flux functions have significantlymore terms

than the STVD and are hence more expensive to compute, such does
not translate into a significant increase in computing effort per iteration
as long as a block-implicit integration strategy is used. As shown in
Table 1 ([13–15]), the present method combined with a block ADI or
diagonally dominant alternate-direction implicit (DDADI) requires
between 2 and 22% more CPU time per iteration compared to the
STVD, with the differences becoming smaller as the number of
transport equations comprising the physical model increases.

IV. Eigenvalue Conditioning

Because the Euler equations accept entropy-decreasing
phenomena to form, a carbuncle phenomenon can occur when

Table 1 Ratio between the proposed scheme CPU time and the STVD CPU time

Pseudotime integration

Physical system Explicit Euler Block ADI Block DDADI [13,14]

Navier–Stokes perfect gas 1.50 1.22 1.16
Favre–Reynolds real gas four-speciesa 1.18 1.09 1.06
Favre–Reynolds plasma eight-speciesb 1.06 1.03 1.02

aThe “Favre–Reynolds real gas” physical model includes temperature-dependent specific heats, mass

conservation equations for each species, the nitrogen vibrational energy transport equation, the turbulence

kinetic energy transport equation, and the turbulence kinetic energy specific dissipation rate transport

equation.
bThe “Favre–Reynolds plasma” physical model consists of the Favre–Reynolds real gas transport equations

(modified for plasma effects) along with an extra transport equation for the potential equation [15].
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simulating blunt bodies at hypervelocities. This can be remedied in
some cases by simply conditioning the acoustic waves (i.e., the
eigenvalues that have the form vx � a, vx − a) within the eigenvalue
matrices. Such is not sufficient to prevent a carbuncle in the general
case, however, and it is necessary to also condition the convective
waves to unconditionally prevent aphysical phenomena to form.
Conditioning the convective waves does present a challenge because
it leads to excessive dissipation within viscous layers effectively
preventing the flux discretization scheme to capture the shear stress
and the thickness of high-Reynolds-number boundary layers with a
limited number of nodes. A remedy was proposed by Gnoffo and
White in [16], where the conditioning is made a function of the edge
Reynolds number, which is defined as

Reedge ≡
ρas

μ
(25)

wherea is the speed of sound, and s is some reference length obtained
from the volume and the area of the cells on the left and right of the
interface (see [16] for more details). However, when used in
conjunction with the STVD scheme or the proposed stencil, such is
found to introduce nonnegligible dissipation near the leading-edge of
flat plates where less than five gridlines or so are located within the
boundary layer. This in turn taints the skin friction with some
dissipation for a considerable distance downstream. We thus here
find it necessary to improve the Gnoffo and White technique [16] by
making the eigenvalue conditioning function of the cell Peclet
number rather than the edge Reynolds number, so that the eigenvalue
conditioning is switched off within boundary layers even when the
latter are resolved with very few nodes. For all eigenvalues of the
x-aligned fluxes (i.e., both the acoustic and convective waves of the
convective flux Jacobian A), the conditioning proposed hence takes
on the form:

�jΛ�A�j�r;r → �jΛ�A�j�r;r
� ζamax

�
0;

Δx
max�Δx;Δy;Δz� −

1

min�Pemax; PeΔx�
�

(26)

where a is the sound speed, and PeΔx is the cell’s Peclet number
along x:

PeΔx ≡
ρjvxjΔx

μ⋆
(27)

where vx is the velocity in the x direction, μ
⋆ is the effective viscosity

(including the turbulence eddy viscosity if a turbulence model is
used),ρ is the density, andΔx is the grid spacing along x. Note that the
Peclet number is here used in the context of momentum transfer and
corresponds to the ratio of the rate of advection of momentum to the
rate of diffusion of momentum. Although similar in form, the Peclet
number for momentum transfer differs from the Reynolds number by
including the effect of turbulence eddymomentumdiffusion (i.e., it is
a function of μ⋆ and not simply of μ). Because the turbulence eddy
viscosity can differ from the molecular viscosity by an order of
magnitude or more within the boundary layer, it is important to use
here the cell’s Peclet number and not the cell’s Reynolds number
when limiting the entropy correction.
In Eq. (26), ζ is a user-specified constant typically set to 0.1.

Because the conditioning proposed in Eq. (26) is a function of the
cell’s aspect ratio (through the term Δx∕max�Δx;Δy;Δz�), the
amount of dissipation added along the dimension with the smallest
spacing is less than the dissipation added along the dimension with
the largest spacing. This reduces considerably the dissipation within
high-speed boundary layers where the mesh is clustered near the
surfaces because of the high aspect ratio of the cells in such flow
regions. Further, should the ratio between the mesh spacing and the
maximummesh spacing be less than 1∕Pemax, no entropy correction
is applied. Effectively, this turns off the entropy correction along the
dimension with the smallest mesh spacing for cells that have an
aspect ratio of more thanPemax, with the latter being a user-specified

constant typically set to 20. Further, theminimumbetweenPemax and
the cell’s Peclet number is taken to ensure that, should the physical
dissipation be higher than the numerical dissipation, no entropy
correction is applied because it is not needed.
The conditioning of the eigenvalues of the y- and z-aligned fluxes

can be obtained similarly as in Eq. (26) by substituting the velocity
component and the grid spacing along x by their counterparts along y
and z, respectively.
As for the wave speeds appearing on the denominator of the flux

function, they must also be conditioned to avoid a singularity.
Because conditioning thewave speeds on the denominator of the flux
functions does not lead to a loss of resolution of viscous layers, it can
be performed in the standard manner as follows:

�jΛ�A�j�r;r → �jΛ�A�j�r;r � ζdσ (28)

where σ is the spectral radius of the flux Jacobian, and ζd is a user-
specified constant typically set to 0.1. Of course, should ζd be set to a
large positive value approaching infinity, the cross-derivative terms
would become negligible compared to the other terms, and the
multidimensional flux function would hence revert to its
dimensionally split counterpart. As will be shown in Sec. VI, the
cross-derivative terms do increase the resolution significantly for
many multidimensional problems of interest, and it is hence
important to keep ζd to low values to obtain a high resolution.

V. Interface Averaging

How the properties are averaged at the interfaces between cells can
have a significant impact on the resolution of flux difference splitting
schemes. For instance, in [1], Roe demonstrates that, should the
properties at the i� 1∕2 interface be averaged such that the following
holds:

Fi�1 − Fi � Ai�1∕2�Ui�1 − Ui� (29)

the flux function can capture a contact discontinuity within once cell.
The averaging proposed byRoe yields gains in resolution not only for
one-dimensional flows but also for multidimensional problems as
long as the grid is aligned (or closely aligned) with the streamlines.
For instance, when using the Roe averaging procedure on two-
dimensional structured meshes, high-Reynolds-number boundary
layers can be resolved with minimal dissipation because the grid is
closely aligned with the streamlines near the surfaces. Because the
multidimensional flux function proposed herein does revert to its
dimensionally split counterpart when the grid is aligned with the
waves, and because it is desired to capture high-Reynolds-number
boundary layers with high resolution, we here follow [1] and apply
the Roe averaging procedure when determining the eigenvalues and
eigenvectors at the interface of cells. However, this is performed only
for the eigenvalues and eigenvectors at the interfaces part of the
normal derivative terms [the first two terms on the right-hand side of
Eqs. (18–20)].
As for the cross-derivative terms, Roe averaging does not yield a

higher resolution of viscous layers whether they are aligned with the
mesh or not. Rather, the properties at the interface within the cross
derivatives are here averaged such that they minimize spurious
oscillations near discontinuities. This can be accomplished by
averaging Θ at the interface from the minmod of the left and right
states as follows:

�Θi�1∕2�r;r � minmod��Θi�r;r; �Θi�1�r;r� (30)

Such an averaging procedure helps in maintaining monotonicity
near strong shocks and discontinuities, especially in the hypersonic
regime. Indeed, it is recalled that the cross-difference terms have been
derived such that the small spurious oscillations that they introduce in
the vicinity of shocks or other discontinuities are damped by the
dissipation introduced by the normal derivatives. For such a strategy
to yield essentially monotonic solutions, it is important that the
magnitude of the interface coefficients multiplying the cross
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derivatives does not exceed too significantly the one of the interface
coefficients multiplying the normal derivatives. In regions with high
multidimensional gradients (such as in the vicinity of strong oblique
shocks in the hypersonic regime for instance), this is satisfied by
building the cross-derivative coefficients from the minmod of the
primitive variables on the adjacent nodes as specified in Eq. (30).

VI. Test Cases

Let us nowproceed to assess the gains in resolution of the proposed
genuinely multidimensional flux functions over their dimensionally
split counterparts. For all test cases, the eigenvalue conditioning
parameters ζ and ζd are both set to 0.1. The system of equations
considered is the perfect-gas Euler or Navier–Stokes equations in
generalized coordinates with the specific heat ratio set to 1.4 and the
gas constant set to 287 J∕�kg · K�. When solving viscous flows, the
viscous terms are discretized using second-order centered stencils,
with the thermal conductivity and the viscosity set to 0.03 W∕�m ·
K� and 2 · 10−5 kg∕�m · s�, respectively. Such a physical model is
here chosen for its simplicity and to make the results more easily
reproducible. Nonetheless, it has been verified that similar gains in
resolution could be obtained for more accurate physical models
including real gas effects and additional transport equations to
account for a two-equation turbulence model, multiple species, and
the nitrogen vibrational energy in nonequilibrium.
In rewriting the flux functions outlined in Eqs. (18–20) from

Cartesian to generalized coordinates, the grid spacings Δx, Δy, and
Δz are set to 1, whereas the vector of conserved variables, the
convection flux vector, the convective flux Jacobians, the eigenvector
matrices, and the eigenvalue matrices are set to their curvilinear
counterparts. The eigenvectors of the Euler equations in multiple
dimensions are not unique (there is an infinity of possible solutions),
and how they are chosen does have an impact on the solution,
although such is generally negligible. Nonetheless, to reproduce the
results shown herein exactly, one should use the eigenvectors
outlined in the appendix of [17].
Because several of the flows here considered involve a large

disparity of time scales originating from the viscous effects, it is
considered most efficient to converge the discretized equations
through a blockADImethod using local pseudotime relaxation. Such
alleviates the stiffness associated with the viscous terms and permits
large pseudotime steps to be used leading to fast convergence. The
convergence to steady state is further accelerated through the use of
the multizone acceleration technique outlined in [18].
In assessing the gains of resolution of the multidimensional flux

functions, comparisons are here performed with standard dimen-
sionally split flux functions based on the Roe FDS turned second-
order accurate either through the Yee TVD limiters applied to the
characteristic variables [2] or through the Anderson–Thomas–Van
Leer MUSCL reconstruction-evolution procedure [3]. The MUSCL
reconstruction is here obtained through an extrapolation of the
density, temperature, and velocities. Although interpolating the
effective pressure (including the contribution from the turbulence
kinetic energy) instead of the temperature would result in a higher
resolution of the viscous layers, such is possible only if the FDS
solver is applied to all transport equations (including the turbulence
kinetic energy equation) conjunctly, which is seldom the case.

A. Shear Wave

The first test case considered consists of a Mach 1.98 jet at a
temperature of 300 K flowing parallel to a Mach 3.05 jet at a
temperature of 600K,with both jets having a pressure of 0.1 bar at the
domain entrance. Because the viscosity and thermal conductivity are
set to zero, the exact solution to this problem is trivial; both jets
should remain undisturbed separated from each other by an infinitely
thin shear wave.
When the grid is aligned with the shear wave, the Roe scheme can

capture this problem exactly because the interface averaging is such
that a contact discontinuity (or a shear wave) can be captured within
one cell. However, when the grid is misaligned at an angle of 30 deg
with respect to the shear wave (as is the case here), the dimensionally

split methods introduce significant dissipation, and the shear wave
spreads artificially as the flow progresses downstream. This is
remedied to a significant degree through the use of a genuinely
multidimensional scheme, which, through the Mach number
contours in Fig. 1 using a 602 grid, can be seen to result in a significant
reduction of the spreading of the contact discontinuity.
Interestingly, whether the mesh is orthogonal or significantly

skewed does not affect too considerably the gains in resolution. For
instance, consider the same shearwave test case as before butwith the
orthogonal mesh substituted by a skewed mesh (with half the cells
corners having angles of 45 deg and the other half having angles of
135 deg). As attested by the Mach number contours in Fig. 2, the
proposed method still offers a significant gain in resolution over the
STVD when used on skewed cells. Therefore, should it be deployed
to unstructured meshes with mixed elements (which share similar
characteristics as structured meshes with skewed cells), the present
scheme is hence expected to also offer significant gains in resolution
over the STVD, albeit of less importance than reported here on a
structured near-orthogonal mesh.

B. Wavy Wall

The second test case consists of a Mach 2 flow at a pressure of
0.1 bar and a temperature of 300 K entering a channel in which the
bottom wall position is made proportional to a sine function. Because
such a “wavy-wall” channel generates multiple oblique shocks,
compression fans, and expansion fans that interact with each other
creating complex wave patterns that are representative of flows found
in supersonic inlets or scramjet combustors, it constitutes a particularly
good test case to assess the performance gains of ourmultidimensional
scheme for some problems of interest to supersonic flight.
A comparison of the pressure contours onvarious grid sizes in Fig. 3

shows that the proposed multidimensional scheme achieves close to a

2

3

a) STVD

2

3

b) Present
Fig. 1 Streamwise Mach number contours for the shear-wave case on
an orthogonal mesh.

2

3

a) STVD

2

3

b) Present

Fig. 2 StreamwiseMach number contours for the shear-wave case on a
skewed mesh.
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twofold increase in resolution per dimension compared to its
dimensionally split counterpart. That is, for a desired level of
resolution, the useof theproposedapproachpermits themesh size tobe
reduced by almost four times for this two-dimensional problem.What
makes this gain in resolution especially appealing is that it is obtained
while not sacrificing the convergence capabilities of the STVD
scheme. This is in contrast to alternative approaches, such as the Van
Leer limiter or weighted essentially nonoscillatory (WENO), which
achieve higher resolution at the expense of convergence hangs. Indeed,
as can be seen from the residual histories in Fig. 4, the residual of the
proposed multidimensional scheme converges down to machine
accuracy, whereas the one of the MUSCL scheme with a Van Leer
limiter hangs after less than one order of magnitude of convergence.
Such good convergence behavior is not limited to this flowfield in
particular; for all test cases outlined in this paper, itwas verified that the
proposed stencils did not result in convergence hangs.

C. Blunt Body

A third key problem that is often used to test numerical methods is
supersonic flowover a blunt body. Such can be challenging to capture
because it often leads to a carbuncle phenomenon (i.e., an aphysical
wave that prevents the bow shock from stabilizing), which originates
from the Euler equations allowing entropy-decreasingwaves to form.
Although this could be remedied simply by adding viscous terms and
making sure that the mesh is fine enough to capture viscous effects
occurring within the shockwave, this strategywould be cumbersome
for typical bow shocks forming on flight vehicles because the shock-
wave thickness in sea-level air is of the order ofmicrons, and reducing

the mesh spacing to micrometer scale would require excessive

computing resources. Rather, to prevent a carbuncle from forming, it

is more computationally efficient to add some numerical dissipation

to the discretized equations to mimic the effect of the physical

dissipation. This is here accomplished by conditioning the

eigenvalues as outlined previously in Sec. IV.
We here test our eigenvalue conditioning for a Mach 3 flow at a

pressure of 10.2 kPa and a temperature of 300 K interacting with a

blunt body in the shape of an ellipse. To make the problem more

susceptible to a carbuncle, the computational domain surrounds the

blunt body using the same mesh as depicted in [9]. Such problem

setup and grid were found to create a carbuncle with the proposed

method as well as with the STVD scheme should the convective and

acoustic waves not be conditioned. However, a carbuncle could be

avoided when conditioning the eigenvalues with ζ set to 0.1.
As attested by the pressure coefficient contours shown in Fig. 5, and

in contrast to previous finite volume schemes derived from Cauchy–

Kowalevski, the proposed method yields an essentially monotone

solution in the vicinity of the bow shock whether or not the mesh is

aligned with the wave. Further, because the present scheme includes

cross-derivative terms, it exhibits a higher resolution than the STVD in

the vicinity of the shock when the latter is misaligned with the mesh.

Such high resolution is not limited to this Mach number in particular;

throughout the freestream Mach number range 3–30, the proposed

method has been verified to yield a solution that is free of spurious

oscillations and that has a higher resolution than the STVD.
It may be argued that the proposed method is more likely to

produce a carbuncle because it introduces less dissipation near the

discontinuity. However, it has been verified that this is not the case

and that the higher resolution near the bow shock is obtained without

an associated drawback. For instance, consider the same blunt body

geometry but with the incomingMach number set to 8 to increase the

likelihood of a carbuncle. As can be seen from the density contours in

Fig. 6, the proposed method requires less, not more, additional

dissipation to prevent a carbuncle. Thus, not only does the present

scheme provide a higher resolution of the shock for a given entropy

correction factor, but it is less susceptible to yield a carbuncle. In turn,

this permits the use of lower values of the entropy correction,

resulting in even higher resolution.

D. Hypersonic Boundary Layer

Flow features that can be challenging to capture with high

resolution using compressible flow schemes are rarefaction fans
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Fig. 3 Pressure contours (in pascals) for the Mach 2 wavy-wall case.
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Fig. 4 Residual convergence history comparison for the wavy-wall
test case at a Courant-Friedrich-Lewy number of 1.0 and a mesh of
401 × 101 nodes.
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and especially boundary layers at hypervelocities. Consider for

instance a Mach 8.49 flow expanding 15.02 deg over a flat plate.

Such effectively leads to the flow being accelerated to Mach

numbers in excess of 12 before being slowed down at the lower

surface through a boundary layer (see Fig. 7). For this problem, the

inflow pressure and temperature are given values of 0.1 bar and

300 K, respectively. To capture the boundary layer efficiently, the

grid is clustered at the wall such that the distance between the wall

and the near-wall node is of 100 μm for a 412 mesh and, as the mesh

is refined, decreased inversely proportional to the grid lines along

the y coordinate.
The high Mach number of the flow entails substantial viscous

dissipation effectively raising the temperature tenfold from the edge

to the center of the boundary layer. Because the wall temperature is

a) STVD = 0.2 b) Present c) STVD d) Presentζ = 0.2ζ = 0.3ζ = 0.3ζ 
Fig. 6 Density contours for the blunt body case at Mach 8 and using a 128 × 66mesh.
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a) STVD

9 10 11
12

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.01

0.02

0.03

0.04

0.05

x, m

y,
m
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Fig. 7 Contours of x component of the Mach number for the hypersonic boundary-layer case using an 812 mesh.

Table 2 Surface heat flux for the hypersonic boundary-layer test case

Heat flux to the surface at x � 0.14 m, kW∕m2

Scheme ζ 412 mesh 812 mesh 1612 mesh 12812 mesh

MUSCL-TVD (minmod) 0.0 44.1 34.4 27.8 25.7
MUSCL-TVD (Van Leer) 0.0 17.0 19.3 21.6 25.2
STVD 0.0 27.5 26.4 25.7 25.2
Present 0.0 28.9 26.6 25.9 25.5
STVD 0.1 27.6 26.5 25.7 25.2
Present 0.1 28.9 26.6 25.9 25.5

a) Huang-Lerat [8] b) Present c) STVD

Fig. 5 Pressure coefficient profiles for the blunt body case atMach 3 using a 64 × 33mesh. Figure 5a is reprinted from [8] with permission fromElsevier.
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fixed to 300 K and is significantly less than the maximum

temperature within the layer (∼1000 K), a significant heat flux to the
surface occurs. Such is particularly difficult to capture with high

resolution because of its high sensitivity to the amount of dissipation

introduced by the convective flux discretization scheme. For

instance, as shown inTable 2, an accurate prediction of the heat flux at

the wall can necessitate a mesh size almost 16 times greater when

using the MUSCL reconstruction-evolution as opposed to the STVD

scheme. Similarly to the STVD approach, the present method

introducesminimal dissipation and offers an excellent approximation

to the heat flux even on the coarsest mesh considered. Indeed, the

proposed scheme achieves a similar level of accuracy using a 412

mesh than theMUSCL scheme does using a 1612 mesh, thus yielding

amore than 50-fold increase in computational efficiency. (This is due

to the computing effort being proportional to the number of nodes times the number of iterations, with the number of iterations typically

increasing inversely proportional to the mesh spacing). Such a test

case is also useful in verifying if our proposed eigenvalue

conditioning does not introduce excessive dissipation within viscous

layers. When ζ is set to 0.1 (the same value that is recommended to

prevent carbuncles from occurring on bow shocks), almost no

adverse effect can be observed on the resolution of the viscous layers

either when using the multidimensional scheme or the dimensionally

split approaches (see Table 2).

Not only is the proposed method advantaged resolution-wise over

the MUSCL approach in capturing the heat flux at the wall, but it is

also advantaged over the STVD in capturing the rarefaction wave.

Indeed, as is apparent from the Mach number contours in Fig. 7 and

the temperature profiles in Fig. 8, the present method yields in some

M = 2.5
P = 1 bar
T = 240 K

M
= 2

P = 2 bar

T = 700 K

50 130

x

y

z

25°

57.2

12.7

25°

Fig. 9 Schematic of the ramp injector test case; all dimensions are in
millimeters; surfaces of symmetry are imposed at z � 0 and
z � 28.6 mm.
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Fig. 8 Temperature profiles at x � 0.14 m for the hypersonic boundary-layer test case.
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Fig. 10 Temperature profiles in kelvins at x � 0.083 m for the ramp injector test case: a) STVD, 0.5million nodes; b) STVD, 1.7million nodes; c) present
scheme, 0.5 million nodes; and d) present scheme, 1.7 million nodes.

Table 3 Stagnation pressure difference for the ramp injector test
case at x � 0.085 ma

∫ y∫ zΔP° dz dy, Pa · m
2

Mesh Nodes STVD Present

90 × 60 × 30 146,475 1060 1009
135 × 90 × 45 493,574 983 941
203 × 135 × 68 1,688,406 924 889
304 × 203 × 101 5,643,760 881 852

aThe stagnation pressure difference ΔP° corresponds to the difference between the

freestream stagnation pressure and the local stagnation pressure determined fromperfect

gas relationships.
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regions a 1.5–2.0 increase in resolution per dimension compared to

the STVD.

E. Ramp Injector

Another problem of interest to hypersonics is the so-called ramp

injector (see Fig. 9), which is commonly used within scramjet

airbreathing engines to mix fuel with the incoming air. The ramp

injector achieves its high mixing efficiency through the generation of

strong axial vortices, which originate from the bow shock generating

a large pressure difference between the top of the injector and its

sides. The axial vortices remain present within the flow for several

injector lengths, effectively stretching the fuel–air surface area and

hence increasing themixing efficiency. In addition to being a problem

of practical interest to airbreathing propulsion, it also is of interest in
testing our method in resolving three-dimensional (3-D) axial
vortices. For ease of reproducibility, we here prefer not to inject fuel

but rather to inject air at different inflow conditions than the
freestream as depicted in Fig. 9. Further, we here solve the Euler
equations excluding viscous and heat transfer effects. Because there

is no physical dissipation, the contact surface between the injectant
and the incoming flow does not spread, no mixing occurs, and the

axial vortices keep their strength over the entire domain.
In Fig. 10, a comparison of the temperature contours obtained on

several meshes reveals that the proposed multidimensional scheme
requires about one-third the number of nodes of the STVD to yield
the same resolution of the axial vortices. This is confirmed through a

comparison of the stagnation pressure difference on several meshes
in Table 3; the dimensionally split approach requires the mesh to be

refined by about three times to match the resolution of the genuinely
multidimensional approach. Because the computing effort scales
with the inverse of mesh spacing to the fourth power for a three-

dimensional problem (should the number of iterations increase
linearly with the number of grid lines per dimension), this translates

into a four- to five-fold increase in computational efficiency when
simulating 3-D axial vortices.

F. Shock-Induced Separation

The difficulty in simulating shock-induced separation regions at

hypervelocities stems from the large variation of flow speeds
involved, ranging from thousands ofmeters per second in the inviscid

flow just above the bubble to a few tens of meters per second within
the separated flow region. Thus, such a problem can provide a good
test bed in determining the resolution capabilities of our numerical

method not only in solving supersonic viscous boundary layers but
also in solving low-subsonic viscous separated regions.
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Fig. 11 Steady-state streamlines for the shock-induced separation test
case using the present scheme and a 9602 mesh.
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Fig. 12 Skin friction coefficient for the shock-induced separation test case.
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The shock–boundary-layer interaction problem here considered
consists of air at Mach 4.8 with a pressure of 1 kPa and a temperature
of 55.4 K entering a channel with the upper wall being inclined at an
angle of 8 deg to generate a shock wave. Such a shock then impinges
on the laminar boundary layer present on the lower wall, creates flow
reversal, and reflects. The region of flow reversal is substantial and
spans almost one-third of the computational domain, as can be
observed from the streamtraces shown in Fig. 11. To resolve properly
the boundary layer, the grid is constructed such that one-third of the
grid lines along the y coordinate are equally spaced and located
within a distance of 0.66 mm of the lower wall.
We here compare the present method to other Roe-based second-

order schemes on the basis of skin friction coefficient to assess the
capability of the schemes in capturing the size of the recirculation
bubble as well as the shear stress at the wall. As is apparent from
the skin friction profiles in Fig. 12, the present genuinely
multidimensional method is considerably more accurate than other
Roe-based schemes for this particular problem. The MUSCL
reconstruction-evolution approach can again be seen to struggle in
resolving compressible viscous layers; compared to the STVD
scheme and the proposed multidimensional method, it requires a
mesh approximately 16 times larger to yield the same error on the
skin friction at the wall in the attached flow regions. Lowering the
amount of artificial dissipation (by setting ζ to zero when
conditioning the eigenvalues) did not solve this issue.Although using
a more compressive Van Leer limiter did result in a significant
improvement in resolution (especially with respect to the size of the
separated region), the attached viscous layers remained tainted with
significantly more artificial dissipation than when solved with a non-
MUSCL scheme. (The results obtained with the Van Leer limiter are
not shown here because a converged solution to steady state could not
be obtained due to hangs early on in the convergence process,
typically occurring after only one or two orders of magnitude of
convergence.)
Contrary to the reconstruction-evolution strategies, the proposed

method does not introduce excessive dissipation within the attached
boundary layer and yields a skin friction coefficient in such regions
that is as accurate as the one obtained with the STVD. Further, it is
advantaged over the latter by yielding a significantly better resolution
within the separated region, effectively leading to about a tenfold
decrease in grid points for the same level accuracy (see comparison
between the separation region length in Fig. 12 and in Table 4). This
results in amore than 40-fold increase in computational efficiency for
this particular problem because the number of iterations needed to
reach convergence increases three to four times as themesh spacing is
halved.

VII. Conclusions

A new second-order accurate multidimensional flux difference
splitting method is here presented. The scheme is such that it tends
toward centered second-order accurate finite difference stencils in
smooth flow regions but reverts to the first-order multidimensional
flux difference splitting in the vicinity of shock waves or other
discontinuities. Should the gradients in the second and third
dimensions vanish, the proposed stencil collapses to the Yee
symmetric total variation diminishing (STVD).
Various test cases of interest to supersonic and hypersonic flight

reveal that the proposed method achieves typically a 1.5 to 2 times
increase in resolution per dimension compared to the STVD

approach. Such gains in resolution are problem-dependent, however,
and tend to bemore pronounced for flowswhere thewaves propagate
obliquely to the grid lines. Nonetheless, for some problems that are
notoriously difficult to capture with compressible flow schemes
(such as axial vortices generated by ramp injectors or boundary-layer
separation due to shock impingement for instance), the present
multidimensional approach is observed herein to yield a 5- to 40-fold
increase in computational efficiency over its dimensionally split
counterpart.
What makes such gains in resolution particularly noteworthy is

that they are obtainedwhilemaintaining the desirable attributes of the
STVD. That is, the proposed flux functions are in finite volume form,
do not exhibit convergence hangs for a wide range of flows, yield
solutions that are essentially monotonic, and can capture viscous
layers with minimal dissipation. This is in contrast to other high-
resolution stencils for high-speed flows (such as MUSCL-TVD or
weighted essentially nonoscillatory), which achieve higher
resolution of the convective waves at the expense of convergence
hangs or of lower resolution of viscous layers.
The second-order multidimensional flux difference splitting

proposed herein is hence particularly recommendable for simulating
attached and separated viscous hypersonic flows because it yields a
higher resolution of the skin friction or heat flux at the surfaces than
competing strategies. In addition, its reliable convergence tomachine
accuracy over a wide range of conditions not only makes it suited to
simulate steady-state problems but also ensures its compatibility with
algorithms that depend on a reliable convergence of the residual.
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