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The Use of Domain Decomposition in Accelerating the
Convergence of Quasi-Hyperbolic Systems

Bernard Parent� and Jean P. Sislian�

This paper proposes an alternate form of the active-domain method [K. Nakahashi and E. Saitoh,
Space-Marching Method on Unstructured Grid for SupersonicFlows with Embedded Subsonic
Regions,AIAA J. 35, 1280 (1997)] that is applicable to streamwise separated flows. Named
the “marching-window”, the algorithm consists of performing pseudo-time iterations on a min-
imal width subdomain composed of a sequence of cross-streamplanes of nodes. The upstream
boundary of the subdomain is positioned such that all nodes upstream exhibit a residual smaller
than the user-specified convergence threshold. The advancement of the downstream boundary
follows the advancement of the upstream boundary, except inzones of significant streamwise el-
lipticity where a streamwise ellipticity sensor ensures its continuous progress. Compared to the
standard pseudo-time marching approach, the marching-window decreases the work required for
convergence by up to 24 times for flows with little streamwiseellipticity and by up to 8 times
for flows with large streamwise separated regions. Storage is reduced by up to six times by not
allocating memory to the nodes not included in the computational subdomain. The marching-
window satisfies the same convergence criterion as the standard pseudo-time stepping methods,
hence resulting in the same converged solution within the tolerance of the user-specified con-
vergence threshold. The algorithm is not restricted to a discretization stencil and pseudo-time
stepping scheme in particular, and is used here with the Yee-Roe scheme and block-implicit
approximate-factorization solving the Favre-averaged Navier-Stokes (FANS) equations closed
by the Wilcoxk! turbulence model. The eigenstructure of the FANS equationsis also presented.

1. Introduction

T HERE is little doubt that the most efficient way to solve supersonic or hypersonic flow with no streamwise ellipticity is
through a space-marching method, as numerous extremely efficient marching methods developed over the years can attest

(see for example Refs. [1, 2, 3, 4, 5]). The Navier-Stokes equations at supersonic speeds do, however, exhibit some ellipticity
in the marching direction through the streamwise viscous terms and the subsonic layer of the boundary layer, and it is necessary
for a space-marching method to ignore these mechanisms by solving a reduced set of the original equations of motion, suchas
the parabolized Navier-Stokes equations (PNS). The PNS aredefined here as the equation set obtained from the Navier-Stokes
equations by neglecting all viscous terms in the streamwisedirection and by modifying the streamwise momentum equation
to prevent any pressure disturbance to travel upstream, using characteristics splitting or pressure splitting as suggested by
Vigneronet al. [1]. The applicability of the space-marching methods is limited to flows with negligible streamwise ellipticity,
hence preventing their deployment to many practical flowfields.

The need to tackle streamwise ellipticity prompted the development of the “global iteration” space-marching methods in
which a sweep is performed several times on the entire computational domain to permit the upstream propagation of information
(see Ref. [6] for a detailed review). Such are characterized, compared to the pseudo-time marching schemes, by a smaller
memory requirement due to the storage of temporary variables in one marching plane only and by enhanced wave propagation
mechanism in the streamwise direction. The reduced Navier-Stokes (RNS) equations, which are derived from the Navier-Stokes
equations by ignoring all streamwise diffusion terms but not altering the momentum convection terms, are usually solved in this
manner leading to fast convergence of subsonic/supersonicstreamwise unseparated flows [7, 8, 9] and even of viscous/inviscid
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interactions creating streamwise separation [10, 11]. In asimilar vein, Bardina [12] shows that significant reductionin work is
achievable by the use of global marching sweeps to solve the full Navier-Stokes equations for high-speed flows. However,if
not limited to some predetermined zones of the computational domain, the global iteration approach loses some performance
when solving large reverse flow regions, as the number of sweeps can become excessive due to its dependence on the size of
the separation bubble. Further, some computing might be inefficiently allocated to the nodes downstream of the separation
bubble,prior to its convergence. These deficiencies can be remedied by using a space-marching scheme solving the PNS
equations until an elliptic/reverse flow region is encountered, then switching to a global iteration RNS method for the length of
the elliptic region, iterating until convergence is reached, and pursuing with the marching PNS scheme (see Milleret al. [6] for
instance). However, such a strategy forces the solution of the PNS equations in certain regions of the flowfield for which the
PNS assumption might induce appreciable errors. The accuracy of the final solution is hence strongly dependent on the ability
of the method at predicting correctly which regions of the flowfield can be accurately predicted with the PNS equations, and
which regions require the use of the RNS equations.

Recently, a novel approach at solving inviscid supersonic flow with embedded subsonic regions has been proposed [13].
The method, named “active-domain”, consists of performingpseudo-time iterations on a small band-like computationaldomain
that advances in the streamwise direction every time the residual of the active-domain near the upstream boundary fallsbelow a
user-defined threshold. Using sensors based on the streamwise component of the Mach number, the active-domain boundaries
automatically surround any locally subsonic region, on which sufficient iterations are performed to reach steady-state. When the
residual inside the subsonic region decreases below the user-defined threshold, the active-domain advances past the subsonic
region further downstream. By marching in the streamwise direction, the active-domain results in a decrease in work of up
to 10 times compared to standard pseudo-time marching methods for several inviscid problems. However, the ability of the
active-domain at solving accurately a streamwise ellipticregion is limited by the accuracy of the sensor responsible for the
upstream movement of the upstream boundary of the active-domain. Extension of the active-domain method to viscous flow
is hampered by the difficulty of formulating a streamwise ellipticity sensor that captures all significant upstream propagating
waves while restricting the size of the active-domain to a minimum. Success has been reported in solving viscous flow without
streamwise separation by maintaining the active-domain width equal to the height of the boundary layer [14]. However, to the
authors’ knowledge, the active-domain method has not yet been extended to streamwise separated flows.

This paper proposes an alternate form of the active-domain method, named the “marching-window” algorithm, that is
applicable to streamwise separated flows. Similarly to the active-domain, the marching-window performs localized pseudo-time
stepping on a subdomain composed of a sequence of cross-stream planes of nodes. The width of the marching-windowdecreases
to only a few planes in regions of quasi-hyperbolic flow and increases to the size of the streamwise-elliptic region when
encountered. However, in contrast to the active-domain algorithm, the marching-window is strictly a convergence acceleration
technique as it guarantees the residual of all nodes to be below the user-defined threshold when convergence is attained,and
hence does not modify the final solution as obtained with the “standard” pseudo-time stepping schemes. This is accomplished
by keeping the residual upstream of the marching window subdomain updated at all times, and by positioning the upstream
boundary such that the residual of all nodes upstream is below the user-defined threshold. This results in an algorithm that
captures all upstream propagating waves affecting the residual significantly. The upstream propagating waves can originate
from (but are not necessarily limited to) large subsonic pockets, streamwise separation, streamwise viscous fluxes, orthe flux
limiters in the streamwise convection flux derivative, for instance. Further, to enhance the performance of the algorithm, a
sensor based on the Vigneron splitting [1] is developed to advance the downstream boundary when significant streamwise
ellipticity is detected.

Several numerical experiments are presented ranging from the inviscid solution of a supersonic inlet with a blunt lead-
ing edge to turbulent shock boundary layer interactions with considerable streamwise flow separation solved with the Favre-
averaged Navier-Stokes (FANS) equations closed by thek! turbulence model of Wilcox [15]. A time accurate turbulent flow
field using dual time stepping is also investigated. A comparison between the marching-window cycle, the active-domaincycle
(for the inviscid case only), and the standard pseudo-time marching cycle is made on the basis of CPU time, effective iterations,
and storage.
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2. Governing Equations

The residual of the full Navier-Stokes equations can be expressed in generalized coordinates in tensor form for any number of
dimensions as

R D
dX
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� S ; (1)

where the minimization ofR is sought and whered refers to the number of dimensions. Due to the non-linearityof the system
of equations, a fictitious unsteady term@Q=@� is necessary to obtain the right physical root from a given set of initial conditions,
i.e.

@Q
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D �R : (2)

Even though the marching-window method presented in this paper along with the discretization and pseudo-time stepping
schemes are not linked to some governing equations in particular, this study focuses on the Favre averaged Navier-Stokes
equations (FANS) closed by the Wilcox two-equationk! model [15]. Thek! turbulence model is chosen due to its capability
at solving accurately a wide range of realistic flowfields, while maintaining a close resemblance in form to the classicalNS
equations and avoiding the use of extra low Reynolds number terms (present in thek� family of turbulence models for instance).
Aside their inelegance, additional low Reynolds number terms are detrimental to the performance of the algorithm by increasing
the complexity of the source terms which results in bigger meshes necessary to attain grid convergence, and by increasing the
stiffness of the governing equations which often translates into increased convergence time. This is avoided by thek! modeling
which induces a conservative variableQ, a convective fluxFi , and a diffusion termG of
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where the notationXi;j stands for@Xi=@xj andJ is the metric Jacobian, both of which obtainable in any dimension following
the approach of Viviand [16] and Vinokur [17]. The total energy, enthalpy and effective pressure include molecular and turbulent
properties,
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with e the internal energy of the gas,vi the velocity component in the Cartesianxi direction andk the turbulence kinetic energy.
Calorically perfect gas assumptions are used to determine the internal energy from the temperature while an ideal gas law is
assumed in findingP from � andT .

Starting from the tensorial form of the governing equationsin Cartesian coordinates, it can be shown that the conductivity
matrixKij corresponds in curvilinear coordinates to
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where the diffusion coefficients include a molecular and turbulent contribution function of the eddy viscosity�t D 0:09�k=!,
molecular viscosity� and molecular thermal conductivity�; that is,
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while ˛ andˇ are function of the metrics only,
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whereıKr
mn

stands for the Kronecker delta, which vanishes shouldm andn differ, but assumes a value of unity otherwise. The
source termS is composed of the sum of the baseline Wilcoxk! source terms [15] and an unsteady source term,
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where the turbulence kinetic energy production termPk can be shown to correspond to
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It is noted that in the Wilcoxk! model,ek is set simply tok which in the freestream is set to a small value to prevent a division
by zero. We prefer, however, to specifyk D 0 in the freestream and, in order to prevent a division by zero in the dissipation
rate source term, to defineek as

ek D max

�
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�
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!�

�

��
; (10)

with kdiv a user-specified constant which is generally set lower than one tenth of the maximum value ofk throughout the
boundary layer. This is verified numerically not to affect the laminar sublayer but to improve the robustness and efficiency of
the integration significantly. The minimum betweenkdiv and!�=� is taken so that a clipping occursonly in non-turbulent flow
regions in which an accurate representation of! does not affect the accuracy of the flowfield.

3. Discretization

The discretization of all terms in the residual is now presented. The use of tensor form in writing the governing equations
in curvilinear coordinates shown in Eq. (1), along with the unique compactKij matrix described in Eq. (5), simplify greatly
the discretization and practical implementation of the viscous terms: less than 100 lines of code are needed to implement the
viscous contribution of the residual for alld 2 Œ1; 2; 3�. By referring to the discretized form of the derivatives along theXi

coordinate byıXi
, the discretized residualR� can be written as

R� D
dX

iD1

"
ıXi
Fi �

dX

j D1

ıXi

�
KijıXj

G
�
#

� S ; (11)

where the diffusion terms are discretized using second-order accurate centered finite difference stencils which, should i D j ,
give, �
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whereKXi C1=2 midway between nodes is taken as half the value ofKXi C1 andKXi for example. The convection terms are
discretized using a conservative form of the Roe scheme [18], turned second order accurate through a symmetric minmod
limiter by Yeeet al. [19]:
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wherej�i j stands for the absolute value of the eigenvalues of the convective flux JacobianAi � @Fi=@Q, and where
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In the above, the properties at the interface are determinedfrom Roe averaging [18]. For the minmod limiter to be in pseudo
control volume form, it is necessary to ensure that all metric terms needed to construct theN matrix at one cell interface are
measured at that particular interface.

A small positive value can be added to the eigenvalues to fix the aphysical carbuncle phenomenon originating from the Roe
scheme when tackling certain problems, especially blunt bodies. This is usually referred to as “entropy correction”, but is just a
convenient way of adding artificial dissipation to the flux discretization [20] and can significantly deteriorate the accuracy of the
scheme in turbulent boundary layers (see for example results obtained by Parent and Sislian [21]). Unless otherwise specified,
no entropy correction term is used in this paper.

Finally, all partial derivatives of the source terms are discretized using second order accurate three-point stencils, except for
the stencil of the time derivative term, which is limited andis set to,
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where the minmod function returns the minimum of its arguments if the arguments are all positive, the maximum if the argu-
ments are all negative, and zero if the arguments are of mixedsigns. It is noted that the second order contribution in Eq. (17) is
in non-conservative form, but, to the authors’ knowledge, such is unavoidable if no future value ofQ (at a timet C�t) is in-
cluded in the stencil and a second-order accurate stencil that results in no spurious oscillations is desired. The non-conservation
of the stencil is weak and numerical tests indicate that Eq. (17) performs well.

3.1. Eigenstructure of the Convective Flux Jacobian

Since the Roe scheme is used to discretize the convection derivatives, the determination of the eigenstructure of the convective
flux JacobianAi � @Fi=@Q is needed. It can be checked by substitution that the following definition of�i ,
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satisfies the necessary relationship det.Ai � wiI / D 0 (with wi any element on the diagonal of�i ) and is hence a valid
eigenvalue matrix. Denoting the flow speed byq, the non-metric effective speed of sound is found to be equalto
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which as might be expected is a function of the kinetic energyof turbulence, contrarily to the “non-turbulent” speed of sound
(here denoted byakD0) encountered in the eigenstructure of the convection termsof the molecular Navier-Stokes equations.
Dividing both sides of Eq. (19) byakD0 and after some reformatting, the normalized speed of sound can be shown to be equal
to

a � a

akD0

D
�
1C P�E C 1

3
M2

t

� 1
2

; (20)
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FIGURE 1. Normalized speed of sounda D a=akD0 versus the turbulent Mach number Mt D
p
2k=akD0, for a calorically perfect gas

according to Eq. (20).

where for a perfect gas,P�E C 1 is equal to the ratio of the specific heats,
 . Figure 1 shows the relationship betweena and
the turbulent Mach number for
 D 7=5 and
 D 5=3. As the turbulent Mach number increases, its influence ona becomes
more predominant due to the relative speed of the turbulent vortices, with respect to the average vortex speed of displacement,
gradually overtaking the thermodynamic sound speed as the information propagation mechanism. For a perfect or real gas, the
derivatives of pressure with respect to the mass-weighted total energy and density are equal to
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with e the internal energy of the gas and where it is assumed that anythermodynamic property can be obtained from only two
others. The right eigenvectors are not unique, and each column of the matrix can be multiplied by a constant other than 0; here,
we choose the multiplying constant of each column such as to keep the same units along each row, except for the last column
which is further multiplied bya2=! which is found to result in faster convergence:
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The exactness of the right eigenvectors can be readily verified by the relation�i D LiAiL
�1

i
. Note that the columns of the right

eigenvectors containinglm;n

i are not needed in one dimension, while in two dimensions,lm;n

i takes on the form
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D .�1/mC1Xi;mC1=bX i ; (23)
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and in three dimensions, becomes,
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In the above,bX i corresponds to the magnitude of all derivatives ofXi , that is,
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4. Pseudo-Time Integration

Using implicit Euler pseudo-time marching the delta form ofthe discretized equations can be shown to correspond to
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where to minimize storage requirements and the inversion effort the LHS is approximated using a multiplication of one-
dimensional operators based on a block-implicit approximate factorization algorithm [22, 23] and a linearization strategy of
the viscous terms by Chang and Merkle [8]:
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whereıKr
1i

is the Kronecker delta,B the linearization Jacobian of the viscous terms (B � @G=@Q), andC�
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the linearization

Jacobian of the negative source terms (@S�=@Q) for thei D 1 sweep but ignored for the other sweeps. Only the negative source
terms are linearized to ensure the stability of the implicitalgorithm [24] and are set to
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The termıXi
Ai is symbolic and stands for the linearization of the first-order Roe scheme with the Roe Jacobian locally frozen.

The use of a fully linearized Roe scheme is shown in Battenet al. [20] not to decrease the number of iterations needed for
convergence for several test problems (in some cases it is even detrimental) while requiring more work per iteration than the
frozen Jacobian approach. Hence, the equation to solve at each node for thei th sweep can be written as
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where�eQXi

0 D ���XiR
Xi

� and the total flux increment�QXi is set to�eQXi

d .
It is emphasized that the success of approximate factorization relies on the degree of invariance of the linearization matrices,

deterring the inclusion of a linearized form of the minmod limiter on the implicit side. Numerical experiments show thata
“switch” type of algorithm on the implicit side might induceerratic patterns in the convergence history sometimes preventing
a converged solution altogether. For similar reasons, the implicit treatment of the cross diffusion terms is not recommended as
their linearization necessarily involves spatial derivatives which are subject to change from iteration to iteration.
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FIGURE 2. Examples of the distribution of the node types for a backward facing step (left) and a two-element airfoil (right); thenumber “3”
represents a wall condition, “0” inflow, “1” outflow, while “+” represents inner nodes and “.” is used for unactivated nodes.

Block-implicit approximate-factorization is chosen hereas it is still one of the most used techniques in solving the com-
pressible Navier-Stokes equations in the hypersonic range. However, it is noted that the use of a different pseudo-timemarching
algorithm (such as DDADI [12], MAF(k) [25], or LUSGS [26]) has been observed by the authors not to affect the performance
gains obtained with the marching-window algorithm presented herein.

4.1. Local Pseudo-Time Step

One commonly used acceleration technique is local pseudo-time stepping based on the CFL condition which results in a wave
traveling speed of one node per iteration for convection dominated flows. However, in multiple dimensions, each dimension
assumes a different CFL condition and one faces the dilemma of specifying a wave traveling speed proportional to the dimension
exhibiting the lowest CFL condition, commonly referred to as a minimum CFL based local time step, or to the dimension
exhibiting the highest CFL condition which is referred to asa maximum CFL based local time step. A formulation including
both the minimum and maximum CFL based approaches can take the form

�� D CFL
d

max
iD1

 
1

jVi j C abX i

!�

d

min
iD1

 
1

jVi j C abX i

!1��

; (30)

where a� varying between 0 and 1 induces a time step of a magnitude situated respectively between a minimum and a maximum
CFL based time step. While it is acknowledged that for viscous dominated regions, a local time step based on the Von Neumann
number (VNN) would result in a more equitable wave propagation which might translate into faster convergence, for the
purposes of this paper Eq. (30) is used exclusively.

5. Boundary Conditions

A multiblock stratagem is generally required when tacklingcomplex geometries with a structured mesh, but it can significantly
complicate the implementation of the domain decompositionalgorithms presented herein for reasons that shall become apparent
shortly. As a substitute to using multiple blocks connectedto the geometry and to one another through their outer edges (or
planes in 3D), any node that is part of the computational domain is allowed to be either a boundary, inner or inactive node.
Although not as multipurpose as the multiblock, such an approach can be used to solve a wide variety of flowfields while
retaining all the simplicity of a single block. Figure 2 shows, for example, how the node types would be distributed for a
backward facing step and a two-element airfoil.

Zeroth order extrapolation polynomials are used to obtain the properties from the adjacent inner node at the supersonic
outflow boundary (hereafter referred to simply as outflow boundary), while the properties at the supersonic inflow (hereafter
referred to as inflow), are unaltered in pseudo-time. At the symmetry boundary node, a first order extrapolation polynomial of
the form

 X D 4

3
 XC1 � 1

3
 XC2 ; (31)
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FIGURE 3. Example of computational domain and subdomain notation in two dimensions; the computational domain limits are denoted by
the superscripts E and S.

is employed to obtainP ?, k, !, � and the velocity components tangent to the surface, while the perpendicular velocity compo-
nent is set to zero. At the wall, the turbulence kinetic energy and the velocity are fixed to zero, while the effective pressure and
temperature (in the case of an adiabatic wall) are extrapolated as in Eq. (31). Also, following Wilcox [27], the dissipation rate
at the wall is specified to

!w D 36

5

�

�d 2
w

; (32)

with dw the distance between the wall node and its nearest neighbor.
It is well known that an implicit treatment of the boundary nodes results in less prohibitive restrictions on the pseudo-time

step size for some problems, but when solving strong shock waves or other highly non-linear phenomena it is not uncommon
for the time step size to be limited in any case by the flow physics, even if the time stepping scheme can be shown to be
Von Neumann unconditionally stable (see the chapter on non linear stability in Laney [28]). Moreover, experience showsthat
treating the boundary conditions presented herein in an explicit manner does not restrict the size of the local time stepmore
than implicit boundary conditions would. For all numericalexperiments presented, an explicit treatment of the boundary nodes
is chosen.

6. Domain Decomposition Algorithms

While domain decomposition is generally used for parallel computing purposes or used to enable the implementation of different
discretization/integration methods in different subdomains, it is utilized here as a means to accelerate the convergence of quasi-
hyperbolic systems. We define as quasi-hyperbolic a system of equations 1) which is elliptic, 2) where some of the terms,
but not all, can be regrouped to form a hyperbolic set of equations, and 3) whose solution is very close to the solution of the
hyperbolic set of terms. For instance, the steady-state Navier-Stokes equations in the hypersonic regime away from thesurfaces
would exhibit a weak influence of the diffusion terms (responsible for the ellipticity of the system) on the solution compared
to the convection terms (the hyperbolic set) and would hencebe classified as quasi-hyperbolic. Similarly, a quasi-parabolic
system is defined as a system of equations 1) which is elliptic, 2) where some of the terms, but not all, can be regrouped to
form a set of parabolic equations, and 3) whose solution is very close to the solution of the parabolic set of terms. The Favre
averaged Navier-Stokes equations closed by thek! model solved at steady-state over a turbulent flat plate would be termed
quasi-parabolic, as the streamwise diffusion terms and theupstream component of the convection terms play a negligible role
compared to the other terms.

9
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The acceleration techniques presented in this paper are aimed at reducing the work needed to solve quasi-hyperbolic or
quasi-parabolic systems through the use of domain decomposition. Nonetheless, the effectiveness of the methods is notlimited
to entirely quasi-hyperbolic/parabolic systems and extends to systems where some regions are quasi-hyperbolic/parabolic and
others strictly elliptic. It is emphasized that domain decomposition is used here solely as a convergence accelerationtechnique,
anddoes notmodify the discretized residual, the time stepping schemes, and the convergence criterion, except in the case of
the active-domain method. Convergence is attained independently of the acceleration technique when

� � �verge 8 inner nodes; (33)

with � a convergence criterion based on the maximum between the discretized continuity and energy residuals,

� � max

� jRcontinuity
� j
J�1�

;
jRenergy

� j
J�1�E

�
; (34)

which is divided byQ to obtain units involving only pseudo-time (i.e. 1

s
). The user-defined convergence threshold�verge is

typically given a value of 1001
s
, yet this value is not universal and is dependent on the flowfield at hand. Based on dimensional

analysis arguments,�verge can be thought of as the inverse of a time scale common for all nodes, which we formulate in terms of
the free stream flow speed and a characteristic length,i.e.

�verge � 1

10

q1

Lc

; (35)

where an analogy can be made to the time needed to obtain steady-state flow using an experimental setup. The characteristic
lengthLc can be taken as the length of the domain for instance. It is noted, however, that the efficiency of the domain decom-
position methods presented herein is dependent on the precision of� as a convergence criterion, and since this varies from one
flow problem to the next, it might not always be possible to achieve at first the proper compromise between optimal convergence
rate and acceptable accuracy by using Eq. (35).

Identifying the limits of the computational domain byXS
i

andXE
i

with i 2 Œ1; :::; d � and the limits of a subdomain byX s
i

andX e
i
, with i 2 Œ1; :::; d � the region spanned by the subdomain is referred to by the notation jjX s

i
, X e

i
jj8i , as shown in

Fig. 3. For a subdomain with limits different from the computational domain limits in only one dimension the notationjjX s
n

, X e
n

jjn is employed, where it is implied that the limits in the dimensions other than thenth do not differ from those of the
computational domain (see Fig. 3). Also,jjX s

n
jjn is a shortcut that stands for the subdomainjjX s

n
, X s

n
jjn. A property that

is used in conjunction with the domain decomposition algorithms is the number of nodes of dependence of the discretized
residual,br , which is defined as

br �

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

the maximum number of nodes on which the discretized
residual depends on each side of the center node;

or;

half the maximum discretization stencil point minus one
if the stencil is symmetric:

(36)

For example, the minmod TVD discretization stencil (which is the longest of all stencils contained in the residual) would give
br D 2 but should a first order Roe scheme be employed instead, thenbr would be set to one. Similarly, the number of nodes
of dependence of the boundary nodes is defined as

bb �
�

the maximum number of nodes any boundary node depends
on along one direction;

(37)

which is set to 2, since the properties at the boundary nodes are extrapolated from at most 2 inner nodes using a blend of zeroth
and first order extrapolation polynomials.

When the nodes comprised in the subdomainjjX s
i

, X e
i
jj8i are updated in pseudo-time, then it follows from the definition

of bb that the boundary nodes situated insidejjX s
i

� bb , X e
i

C bb jj8i must be updated. The residual, which depends on both
inner and boundary nodes must then be updated betweenjjX s

i
� bb � br ,X e

i
C bb C br jj8i . In many cases where there are no

boundary nodes situated in the regionjjX s
i
�bb ,X e

i
Cbb jj8i , it is sufficient to update the residual injjX s

i
�br ,X e

i
Cbr jj8i .

For all methods presented in this paper, however, this shortcut is not implemented.
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6.1. Standard Cycle

The “standard cycle” here implies the usual way of updating the solution in pseudo-time, by first finding the residual for all
nodes and then updating the solution. The algorithm can be written in the following steps:

1. update the boundary nodes in the domainjjXS
i

, XE
i

jj8i ,

2. update the residual in the domainjjXS
i

, XE
i

jj8i ,

3. updateQ (by pseudo-time stepping) in the domainjjXS
i

, XE
i

jj8i , and,

4. convergence is attained when� � �verge in the domainjjXS
1

, XE
1

jj8i .

6.2. Multizone Cycle

One strategy towards improving the standard cycle is to divide the computational domain into a number of non-overlapping
zones of approximately equal size and to update in pseudo-time only the zones in which� > �verge. This stratagem has been
previously employed by Sawleyet al. [29] as a convergence acceleration technique for supersonic flows, but where the compu-
tational domain is split into several blocks, instead of several zones. Note that a “zone” is defined as a computational domain
region that can be bounded by boundary and/or inner nodes (see for example Ref. [30]), while a “block” is defined as a region
delimitated by boundary nodes only. The zone length in each dimension is set to at most�1, a user specified constant usually
given a value of 20. At each iteration, should the maximum� inside each zone be greater than the user-specified threshold �verge,
the inner nodes up to the zone boundaries are updated in pseudo-time, followed by the update of the boundary nodes up to the
zone boundaries expanded bybb, and the update of the residual up to the zone boundaries expanded bybb C br . The residual
and properties of all other nodes of the computational domain are not altered. Prior to the first iteration, the computational
domain is divided into a number of non-overlapping zones of length in each dimension no greater than�1 with each zonez
defined by the subdomainjjXz;s

i , Xz;e
i jj8i . Then, at each iteration, the following steps are performed:

1. for each zonez, updateQ (by pseudo-time stepping) in the subdomainjjXz;s
i , Xz;e

i jj8i if � > �verge in the subdomain
jjXz;s

i , Xz;e
i jj8i ,

2. for each zonez, update the boundary nodes in the subdomainjjXz;s
i � bb , Xz;e

i C bb jj8i if � > �verge in the subdomain
jjXz;s

i , Xz;e
i jj8i ,

3. for each zonez, update the residual in the subdomainjjXz;s
i � bb � br ,Xz;e

i C bb C br jj8i if � > �verge in the subdomain
jjXz;s

i , Xz;e
i jj8i , and,

4. convergence is attained when� � �verge in the domainjjXS
1

, XE
1

jj8i .

It is noted that the multizone cycle ensures the residual on all nodes to be up to date after each iteration but, due to the non
self-starting property of this cycle, it is necessary to compute the residual on the entire domain before the first iteration is
performed.

6.3. Active-Domain Cycle

The active-domain is an algorithm aimed at decreasing the work needed for convergence of supersonic inviscid flow [13]
and refers to a band-like computational domain marching in the flow direction in which localized pseudo-time stepping is
performed. The domain width automatically adjusts to the size of subsonic regions when encountered by monitoring the
streamwise component of the Mach number, as shown in Fig. 4. In our notation, the active-domain algorithm can be written as
follows, denoting the left boundary of the computational window byX s

1
and the right boundary byX e

1
:

1. update the boundary nodes in the subdomainjjX s
1

, X e
1

jj1,

2. update the residual in the subdomainjjX s
1

, X e
1

jj1,

3. updateQ (by pseudo-time stepping) in the subdomainjjX s
1

, X e
1

jj1,

4. redefine the active-domain boundaries:

(a) ifM1 < 1:001 for any node in the subdomainjjX s
1

, X s
1

jj1 then decreaseX s
1

by one,

11
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jj XS
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, XE
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jj8i

active-domain
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.�3 � �0 C 1/ nodes
M1 � 1:001

FIGURE 4. Schematic of the active-domain cycle with the upstream and downstream boundaries in equilibrium surrounding an embedded
subsonic region;�0 is the minimum width of the residual monitor subdomain and�3 is the minimum width of the active-domain (when no
subsonic region is present).

(b) if M1 < 1:001 for any node in the subdomainjjX e
1

� .�3 � �0/ , X e
1

jj1 then incrementX e
1

by one,

(c) if � � �verge for all nodes in the subdomainjjX s
1

,X e
1
� .�3 ��0/ jj1 then incrementX e

1
by�0 and setX s

1
D X e

1
��3,

and,

5. convergence is attained when� � �verge for all nodes in the subdomainjjX s
1

, X e
1

jj1 and whenX e
1

D XE
1
.

The size of the residual-monitor region�0 and the size of the active-domain�3 are user-specified constants typically given
values of 4 and 9 respectively. It is emphasized that the active-domain is restricted to inviscid flow due to the “ellipticity
sensors” in Steps 4a and 4b being based on the streamwise component of the Mach number. For viscous flows, this would
effectively enlarge the active-domain to the size of any object due to the vanishing value of the Mach number in the vicinity of
a wall. Aside from being restricted to inviscid flow, the active-domain algorithm does not guarantee that� � �verge for all nodes
of the computational domain when convergence is attained. This is due to the assumption in Step 4a that streamwise ellipticity
is present locally only when the streamwise component of theMach number is less than 1. For inviscid flow, this is exactly true
if the discretization stencil of the streamwise convectionderivative is upwinded (such as the first-order accurate Roescheme
for instance), but is not true for the Yee-Roe scheme used herein due to the Yee flux limiter being a function of downstream
nodes, even when the flow is locally supersonic. Therefore, when used in conjunction with a flux-limiter inducing streamwise
ellipticity in supersonic flow, the active-domain does not meet the necessary convergence criterion for a well-posed acceleration
technique [as stated previously in Eq. (33)].

6.4. Marching-Window Cycle

An alternate form of the active-domain cycle that permits the solution of viscous streamwise separated flows and satisfies the
convergence criterion of Eq. (33) is here presented. Named the marching-window, the algorithm differs from the active-domain
on three points, namely 1) a dynamic outflow boundary is forced at the downstream boundary of the marching-window (see
Fig. 5), 2) the ellipticity sensor responsible for a shift downstream of the downstream boundary of the marching-windowis
based on a Vigneron splitting of the streamwise pressure derivative instead of the streamwise component of the Mach number,
and 3) the upstream boundary of the marching-window is positioned such that� � �verge for all nodes upstream, instead of
being a function of a residual monitor region and a streamwise ellipticity sensor based on the streamwise component of the
Mach number. At the first iteration, the upstream boundary ofthe marching-window is set to the upstream boundary of the
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FIGURE 5. Schematic of the marching-window cycle with the upstreamand downstream boundaries in equilibrium surrounding an embedded
streamwise elliptic region which is bounded upstream by thecondition� � �verge and downstream by the condition' � 'verge; a dynamic
outflow boundary condition is forced on all inner nodes injjXe

1
jj1.

computational domain with the downstream boundary of the marching-window separated from the upstream boundary bybb

nodes. Denoting the upstream boundary of the marching-window byX s
1

and the downstream boundary byX e
1
, the marching-

window cycle can be written as:

1. updateQ (by pseudo-time stepping) in the subdomainjjX s
1

, X e
1

jj1,

2. update the boundary nodes in the subdomainjjX s
1

� bb , X e
1

jj1,

3. update the residual (hence,�) in the subdomainjjX s
1

� bb � br , X e
1

jj1,

4. redefine the marching-window boundaries:

(a) find the maximum value forX s
1

such that� � �verge for all nodes in the subdomainjjXS
1

, X s
1

� 1 jj1,

(b) every�2 iterations, if' > 'verge for any node in the subdomainjjX e
1

� �3 , X e
1

jj1 or if X s
1
> X e

1
� �3 then 1)

incrementX e
1

by one, 2) update the boundary nodes in the subdomainjjX e
1

� 1 � bb , X e
1

jj1 and 3) update the
residual in the subdomainjjX e

1
� 1 � bb � br , X e

1
� 1 jj1, and,

5. convergence is attained when� � �verge for all nodes in the subdomainjjX s
1

, X e
1

jj1 and whenX e
1

D XE
1
.

The marching-window cycle is not self-starting and it must be ensured that the residual is updated for all nodes part of the
computational window before the first iteration.

The ability of the marching-window at satisfying the convergence criterion of Eq. (33) lies in Steps 1-3, whereQ is updated
in pseudo-time in Step 1beforedetermining the residual in Step 3. OnceQ is updated in Step 1 on the subdomainjjX s

1
,

X e
1

jj1, since a boundary node depends on at mostbb neighbors, it is sufficient to update the boundary nodes in the subdomain
jjX s

1
� bb , X e

1
jj1 to guarantee that all boundary nodes upstream ofX e

1
are up to date after Step 2. Once the boundary nodes

have been updated in the subdomainjjX s
1

� bb , X e
1

jj1, since the discretized residual depends on at mostbr neighbors, it is
sufficient to update the residual in the subdomainjjX s

1
� bb � br ,X e

1
jj1 to guarantee that the residual of all nodes upstream of

X e
1

are up to date after Step 3. Since� is a function of the residual,� upstream ofX e
1

is up to date, and the upstream boundary
of the marching-windowX s

1
can be positioned correctly in Step 4a by ensuring for all nodes upstream ofX e

1
that� � �verge. This

serves two purposes: 1) the convergence criterion of Eq. (33) is satisfied if convergence is attained in Step 5, and 2) the upstream
boundary of the marching-window moves upstream for any upstream propagating wave that affects the residual significantly
and raises� above the user-defined convergence threshold�verge. Contrarily to the active-domain, the upstream propagating wave
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is not limited to locally subsonic flow but includes allsignificantstreamwise elliptic phenomena, such as streamwise separated
flow, streamwise viscous derivatives, or flux limiters in thestreamwise convection derivative, for instance.

Step 4b advances the marching-windowdownstream boundary when the width of the window is smaller than a user-specified
constant�3, or when the streamwise ellipticity sensor' is greater than the user-specified constant'verge for any node part of the
subdomainjjX e

1
��3 ,X e

1
jj1. The streamwise ellipticity sensor' is here chosen as the component of the streamwise convection

derivative inducing a streamwise ellipticity. This is derived, following an approach by Vigneronet al. [1], by multiplying by
� the effective pressure terms in the momentum fluxes part of the streamwise convection fluxF1. The eigenvalues of the
streamwise convective flux Jacobian with� frozen can then be shown to correspond to:

e�1 D
�
V1; V1; !; V1 C 1

2
V1P�E .1 � �/Cea1

bX1; V1 C 1

2
V1P�E .1 � �/ �ea1

bX1; V1; V1

�D

;

with ea1 D
�
1

4
ŒV1P�E .1 � �/�

2 C bX2

1
�

�
P� C 2

3
k C P�E

�
H � k � q2

��� 1
2

:

Then, for all the eigenvalues to share the same sign (a necessary condition for an hyperbolic system), it is required that

� D min

 
1; V 2

1

1C P�E

bX2
1a

2 C V 2
1 P�E

!
D min

�
1;

M 2

1
.1C P�E/

1CM 2
1P�E

�
(38)

where the streamwise Mach numberM1 corresponds toV1=abX1. If multiplying by � the pressure derivative terms part of the
momentum components of@F1=@X1 results in a hyperbolic system, it follows that the component of the streamwise convection
derivative which induces a streamwise ellipticity is.1��/ times the pressure derivative terms part of the momentum components
of @F1=@X1. The product is then normalized with�a to obtain units of inverse pseudo-time:

' � 1

�a

(
dX

j D1

�
.1 � �/X1;j

@P ?

@X1

�2
) 1

2

D
bX1

�a
max

�
0;

1 �M 2

1

1C P�EM
2
1

� ˇ̌
ˇ̌@P

?

@X1

ˇ̌
ˇ̌ : (39)

The ellipticity sensor' makes two important assumptions: 1) the streamwise ellipticity originating from the streamwise viscous
derivative terms and the flux limiter part of the streamwise convection derivative is assumed negligible, and 2) at the point
where' is evaluated, the solution is assumed to be converged to steady-state. The first assumption is remedied by introducing
a minimum width of the marching-window,�3, which is typically given a value ranging from 9 to 15. The second assumption
can lead to some performance degradation of the marching-window when the flow near the downstream boundary is far from
convergence. For this reason, the user-adjustable parameter�2 is introduced in Step 4a, with the consequence of evaluating'

every�2 iterations only. Therefore, a high value given to�2 helps in ensuring a more converged solution near the downstream
boundary, and reduces the error in the ellipticity sensor' due to temporarily non steady-state flow. It is suggested to give the
ellipticity sensor threshold,'verge, a value of about 100 times the one given to�verge, that is,

'verge � 10
q1

Lc

; (40)

with Lc a characteristic length of the system. In Step 4b, after the downstream boundary of the marching-window is advanced
by one station, the update of the boundary nodes in the subdomain jjX e

1
� 1� bb , X e

1
jj1 and of the residual in the subdomain

jjX e
1

� 1 � bb � br , X e
1

� 1 jj1 is necessary to ensure that the residual is properly updatedin the marching-window, which is
necessary for Step 1 to be performed correctly at the following iteration.

While the user-definable constants�2, �3, and'verge affect the performance of the marching-window cycle as a convergence
acceleration technique, they donot affect the accuracy of the solution when convergence is attained due to the convergence
criterion of Eq. (33) being satisfied.

6.5. Marching-Window / Multizone Cycle

The performance of the marching-window algorithm can be enhanced by introducing multizone decomposition inside the
marching-window. Before each iteration, the marching-window subdomainjjX s

1
, X e

1
jj1 is decomposed into several zones of

length no more than�1 nodes in each dimension. Then, Steps 1-3 of the marching-window cycle (see Section 6.4.) are replaced
by Steps 1-3 of the multizone cycle (see Section 6.2.).
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TABLE 1.
Effective iteration count, work, and storage comparison ata CFL number of unity, for the blunt leading edge inviscid supersonic inlet case.

128 � 64 nodes 512 � 256 nodes

cycle iter. work stor. iter. work stor.

marching-window / multizone 34.4 1.0 0.11 44.9 22.2 0.91
marching-window 40.4 1.1 0.11 86.8 38.9 0.91

active-domain 55.6 1.3 0.10 102.2 39.2 0.81
multizone 158.5 3.8 1.0 318.6 131.6 16.0

standard cycle 293.0 6.5 1.0 1391.0 524.3 16.0

6.6. Sweeping-Window / Multizone Cycle

Intended for time-accurate simulations using dual-time stepping, the sweeping-window algorithm is identical to the marching-
window algorithm, with the exception of no outflow boundary condition forced on the downstream boundary of the sweeping-
window. When the converged solution of the previous time level is used as initial conditions for the current time level, not
forcing an outflow condition at the downstream boundary helps in attaining faster convergence due to the initial conditions
providing a better “guess” at the downstream boundary. For the same reasons, the sweeping-window cycle can also be used to
gain extra orders of magnitude of convergence on the solution obtained by the marching-window.

7. Numerical Experiments

Three steady state supersonic flowfields and one unsteady flowfield are solved using the different types of cycles mentioned
in the last section, and the performance of each is assessed on the basis of 1) the number of effective iterations, 2) CPU time,
and 3) maximum storage required. To enable a fair comparisonbetween the different cycle strategies, the number of effective
iterations is defined as

effective iterations� number of times an inner node is updated

total number of inner nodes
; (41)

which is a good measure of the cycle performance as long as most of the computing effort is spent on the pseudo-time stepping
instead of the residual, due to the overlap of the residual determination when a multizone decomposition is used. The implicit
scheme used herein spends three quarters of its computing effort on the time stepping side, therefore reducing the residual
overlap overhead work and justifying the use of Eq. (41) as a performance parameter. In spite of being accurately measured,
the number of CPU seconds is not regarded as a more meaningfulperformance parameter due to the unavoidable bias that
might occur in the programming of the cycles and the high dependence of the work on the architecture of the computer. Certain
enhancements to the multizone cycle, such as unifying adjacent zones, could be implemented which would result in a non-
negligible decrease in work, while the use of a vector computer (of CRAY type) would advantage the longer loops present in
the standard cycle. Therefore, both the number of effectiveiterations and CPU time are monitored for all test cases.

7.1. Inviscid Supersonic Inlet with a Blunt Leading Edge

A first comparison between the different cycles is performedfor a steady-state inviscid flow over a 1 m long supersonic inlet.
Air enters the channel at a Mach number of 5, a pressure of 4 kPa, and a temperature of 240 K. The grid size is varied between
128 � 64 nodes and512 � 256 nodes. The user-defined parameters of interest are set to (when applicable)

� D 0:5; �verge D 100
1

s
; 'verge D 5000

1

s
; �0 D 4; �1 D 20; �2 D 3; and �3 D 9;

where the value of 0.5 given to� translates into a geometric average between the minimum CFLcondition based pseudo-time
step and the maximum CFL condition based pseudo-time step. The convergence threshold�verge is low enough that a decrease
in �verge would not result in any noticeable difference of the pressure contours in Fig. 6. It is noted that the use of the entropy
correction by Yeeet al. [19] withe� D 0:2 is here used to avoid a carbuncle phenomenon near the blunt leading edge.

Table 1 shows the CPU time and effective iterations needed toreach convergence for the marching-window, marching-
window/multizone, active-domain, multizone, and standard cycles. Due to the CFLD 1 restriction on the traveling speed
of the waves in the flowfield to approximately one grid line periteration, the standard cycle requires a number of iterations
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FIGURE 6. Pressure contours for the blunt leading edge inviscid supersonic inlet case obtained using a512 � 256 grid; the inflow conditions
correspond toM D 5, P D 4 kPa andT D 240 K; no difference is noticeable between the pressure contours obtained with the different
cycles.

proportional to the number of grid lines along the streamwise direction,i.e.293 iterations for a128�64mesh to 1391 iterations
for a512� 256mesh. The multizone cycle suffers the same symptoms but has the extra advantage ofnotallocating work to the
zones where all nodes exhibit a� smaller than the user specified threshold, therefore reducing the computing to a smaller and
smaller domain as the iteration count progresses and the non-converged flow region moves towards the domain exit. This results
in impressive savings in iteration count of 1.8 times for thecoarse mesh and of 4.4 times for the fine mesh. Both the active-
domain cycle and the marching-window cycle decrease further the iteration count by allowing a computational window to travel
in space following the propagation of the waves. This results in a decrease in effective iterations, compared to the standard cycle
using the512 � 256 mesh, of 14 and 16 times for the active-domain and marching-window respectively. Furthermore, the use
of multizone decomposition inside the marching-window focuses the pseudo-time stepping effort to the regions requiring more
iterations to reach convergence, such as the region of subsonic flow upstream of the inlet blunt leading edge, hence resulting
in only 45 effective iterations to reach convergence and an overall reduction in effective iterations of 31 times compared to the
standard cycle.

It is reminded that the standard cycle, the multizone cycle,and the marching-window cycle (with and without multizone
decomposition) all guarantee that

� � �verge 8 inner nodes;

once convergence is reached [as previously stated in Eq. (33)], which is a necessary condition for a well-posed acceleration
technique. The latter isnota property of the active-domain method when the discretization stencil for the streamwise convection
derivative depends on downstream nodes in locally supersonic flow. The Yee TVD limiter used here has this property, and the
active-domain algorithm induces a converged residual thatdoes not satisfy the convergence criterion of Eq. (33).

It could be argued that raising the CFL number would improve the standard cycle over the others for this particular case.
Investigation on a change of CFL number is not performed, butis addressed in the subsequent test problems. It is noted that
for many realistic problems dominated by non linear phenomena, nonlinear stability conditions restrict the use of highCFL
numbers until the waves have started to settle down considerably and for which the use of a fine mesh results in very poor
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TABLE 2.
Effective iteration count, work, and storage comparison for the backward facing step case for a256 � 128 grid.

CFL D 1 1 � CFL � 10

cycle iter. work stor. iter. work stor.

marching-window / multizone 459 2.0 1.0 229 1.0 1.0
marching-window 1166 3.9 1.0 355 1.2 1.0

multizone 1259 5.9 4.3 698 3.2 4.3
standard cycle 3164 10.4 4.3 1054 3.5 4.3
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FIGURE 7. Mach number contours of the backward facing step case, obtained using a256 � 128 node mesh; the inflow conditions are set to
a Mach number of 2, Reynolds number per meter of 5 million and temperature of 300 K.

performance of the standard cycle.

7.2. Backward Facing Step

Although the gains in computing efficiency obtained throughthe marching-window cycle might be expected for an entirely
supersonic problem without any reverse flow regions, we proceed to show in this subsection that the marching-window can
reduce convergence time considerably even when a substantial portion of the flowfield is separated.

Air enters the computational domain at a Mach number of 2, Reynolds number per meter of 5 million and temperature of
300 K. Symmetry conditions are applied atx2 D �0:015 m and atx2 D 0:03 m, inflow atx1 D �0:067 m, and outflow at
x1 D 0:2m, and an adiabatic wall boundary condition is in effect elsewhere. The Mach number contours shown in Fig. 7 show
the limits of the recirculation region (0 � x1 � 0:04) in which 25% of the grid lines alongX1 and 50% of the grid lines along
X2 are placed. The investigation is performed using a256 � 128 mesh, clustered at the surfaces; it is noted that no significant
difference in the trends is observed using a coarser mesh of128 � 64 nodes.

A minimum/maximum CFL averaged local time step as specified in Eq. (30) is used for all cycles, and the convergence
threshold along with the other user-defined constants are specified to

� D 0:5; �verge D 100
1

s
; 'verge D 5000

1

s
; �1 D 20; �2 D 3; and �3 D 9:
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TABLE 3.
Effective iteration count, work, and storage comparison for the concatenated channels test case; the mesh size is of256 � 128 nodes.

0:1 � CFL � 1 0:1 � CFL � 10

cycle iter. work stor. iter. work stor.

marching-window / multizone 431 1.9 1.0 219 1.0 1.0
marching-window 1111 4.0 1.0 444 1.7 1.0

multizone 1571 7.8 6.2 1215 5.9 6.2
standard cycle 4547 15.5 6.2 2342 8.0 6.2

TABLE 4.
Sensitivity of the effective iteration count and work to theuser-defined constants for the concatenated channels test case; the

marching-window/multizone cycle is used with a mesh size of256 � 128 nodes, and a CFL range0:1 � CFL � 10.

�1 �2 �3 'verge work iter.

20 3 9 5 � 103 1.00 1.0
10 3 9 5 � 103 1.20 1.12
40 3 9 5 � 103 1.00 1.02
20 15 9 5 � 103 1.15 1.12
20 1 9 5 � 103 0.96 0.98
20 3 5 5 � 103 1.46 1.41
20 3 18 5 � 103 1.19 1.24
20 3 36 5 � 103 1.89 1.99
20 3 9 5 � 102 1.33 1.40
20 3 9 5 � 104 1.57 1.54

When a variable CFL number is used, it is set to a function of�max as opposed to the iteration count to enable a more adequate
comparison between the different cycles, since the convergence history has a different dependence on the iteration count for
each cycle. Note that�max stands for the maximum value of� in the computational window, which corresponds to the entire
domain for the multizone and standard cycles. In this case, a�max varying between105 and103 is made to induce a CFL number
varying between 1 and 10. The variation in CFL number is necessary due to nonlinear stability restrictions on the time step
size, and it is assumed that an inverse relationship exists between�max and the maximum allowable CFL number for stable and
predictable convergence.

The influence of a change in CFL number on the efficiency of the different cycles can be seen in Table 2. The marching-
window/multizone cycle at a CFL of unity requires 6.9 times fewer iterations to reach convergence than the standard cycle.
Yet, if the CFL is varied between 1 and 10 the speed-up is reduced to 4.6 times. As expected, a rise in the CFL number
greatly helps the propagation of the waves along the streamwise direction for the standard cycle, while the transmission of
the streamwise information is already adequate at a CFL of unity for the marching-window and marching-window/multizone
cycles. Nevertheless, the recirculation region is the iteration bottleneck of this problem and the number of steps necessary to
solve it is similar for all approaches. For the standard cycle, since the entire computational domain is computed at every step,
a region of slow convergence somewhere in the flowfield translates in a very high number of effective iterations, whether the
region of slow convergence is very small or not. On the other hand, the marching-window algorithm focuses the effort on the
region of slow convergence, consequently resulting in muchimproved algorithm efficiency.

7.3. Concatenated Channels: Shock / Boundary Layer Interactions

The ability of the marching-window algorithm to solve shock/ boundary layer interactions at hypersonic flow conditionsis now
tested. The geometry involves the concatenation of a1:0�0:5m channel to a0:69�0:38m channel through a37ı compression
ramp. Air enters the first channel at uniform conditions ofM D 5, P D 1000 Pa, andT D 450 K. Fixed temperature
(Twall D 450 K) wall boundary conditions are applied on bottom and top boundaries, with a grid clustered at both walls. As
for the backward facing step case, a geometric averaged local time step is utilized to enhance wave propagation through high
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FIGURE 8. Effective pressure contours of the concatenated channels case obtained using a512 � 256 mesh; air enters the first channel at a
Mach number of 5, a pressure of 1000 Pa and a temperature of 450K.

aspect ratio cells, while the other user-adjustable parameters are set to

� D 0:5; �verge D 100
1

s
; 'verge D 5000

1

s
; �1 D 20; �2 D 3; and �3 D 9:

From the effective pressure contours of Fig. 8, two recirculation regions are visible: one at the start of the shock formed by
the37ı wedge, and one at the point where the shock impinges on the topwall boundary layer. Both recirculation zones are of
appreciable size due to the very low Reynolds number of the flow which helps generate thick incoming boundary layers. The
major obstacle in converging this flowfield efficiently comesfrom the high difference in time scales between the convection
dominated flow in the middle of the channels and the viscous dominated recirculation zones. Time accurate simulations of
a similar problem indicate that the amount of time required for the separated flow regions to reach steady state is typically
one order of magnitude more than the time needed for the shockstructure to establish itself. Consequently, one would prefer
high pseudo-time steps to be used in the recirculation zonesfor fast convergence, but unfortunately the step size is limited by
nonlinear stability restrictions which are of importance especially near the non-converged shock waves. For these reasons, it is
not surprising that so many iterations are needed for the standard cycle to reach convergence, as Table 3 shows: 4547 iterations
for a CFL number varying between 0.1 and 1 and 2342 iterationsfor the range0:1 � CFL � 10. Similarly to the backward
facing step, the CFL number is linked to�max such that at�max D 104, the CFL number is 10 and at�max D 106, the CFL number
is 0.1.

The marching-window/multizone cycle performs particularly well as the work is focused on the reverse flow regions, while
the rest of the domain is quasi-hyperbolic/parabolic and needs only a small amount of work to reach convergence (see Fig.9).
The use of the marching-window coupled with a multizone strategy makes possible a decrease in effective iterations of 8 times
compared to the standard cycle, independently of the CFL number used, as shown in Table 3.

There might be doubts as to the adequacy of a varying CFL number function of �max as a means to compare different
cycles. For this reason, additional simulations involvingthe marching-window/multizone and standard cycles are performed
in which the CFL number is made a function of the iteration count and raised to 10 as rapidly as the stability conditions
permit. 1930 iterations for the standard cycle are needed for convergence while 197 iterations are needed for the marching-
window/multizone cycle. Again, while a slight increase in efficiency for the standard cycle is apparent, approximatelythe same
amount is noticeable for the marching-window/multizone cycle.
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FIGURE 9. Location of the marching-window upstream and downstreamboundaries for the concatenated channels case using the marching-
window/multizone cycle, with a variable CFL number,i.e.0:1 � CFL � 10; notice the high amount of work spent on the recirculation zones
in the vicinity ofX1 � 128 andX1 � 218, while very few steps are needed to converge the quasi-hyperbolic/parabolic regions.

As in the previous test cases, a convergence criterion of�verge D 100 1

s
is found necessary to obtain reasonable accuracy,

and no discernible difference is observed between the contours of properties obtained with the different cycles. Even if both
the marching-window and the standard cycle guarantee the convergence criterion of Eq. (33) to be satisfied once convergence is
attained, the governing equations have multiple roots due to their non-linearity, and a different flow solution could beobtained by
the different cycle strategies. For all test cases presented here, however, it is verified that the same root is obtained independently
of the acceleration technique.

The sensitivity of the user-adjustable parameters for the marching-window cycle is assessed for this test case in Table4. It
is seen that the performance of the marching-window is not affected considerably by a change of the average zone length�1

or by a change in�2, the latter being the number of iterations before a reading of the streamwise ellipticity sensor� is taken.
For �1 varied from 10 to 40, the number of effective iterations is observed to change by only 12%, and for�2 varied from 1
to 15, the number of effective iterations increases by 14%. On the other hand, the parameters�3 and'verge are seen to affect
the performance of the algorithm considerably. Raising�3 from 9 to 36 increases twofold the number of effective iterations,
and increasing'verge tenfold results in an increase of 54% in the effective iterations count. The high sensitivity of the effective
iterations on either�3 or 'verge is due to the high dependence of the width of the marching-window on these parameters. When
the marching-window encloses too tightly a zone of streamwise ellipticity, the solution needs to be converged locally several
times, hence increasing the work. When the marching-windowoverestimates the size of a streamwise elliptic region, thehigh
number of iterations needed locally to converge a streamwise-elliptic region is spent on a larger portion of the computational
domain, hence resulting in decreased performance.

7.4. Time Accurate Simulation of an Exploding Cavity in a Supersonic Stream

The performance of the different cycles on a time accurate simulation of a stagnant high pressure flow pocket exploding into
a Mach 2 air stream is investigated in this subsection. The computational domain has dimensions as shown in Fig. 10, and is
spanned by a grid composed of256 � 128 nodes of which110 � 38 are allocated to the cavity. Inflow, outflow and symmetry
conditions are applied to the left, right and top boundariesrespectively, while an adiabatic wall condition is in effect elsewhere.
The mesh is clustered at the inflow and at all surfaces to capture the turbulent boundary layer correctly and is not alteredin
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TABLE 5.
Effective iteration count, work and storage comparison forthe time accurate simulation of an exploding cavity; the CFLnumber is unity.

cycle iterations work storage

multizone 1505 1.0 5.0
sweeping-window / multizone 2034 1.5 1.0

sweeping-window 2980 1.9 1.0
standard cycle 4418 2.0 5.0
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FIGURE 10. Effective pressure contours of the exploding cavity case using a mesh composed of256 � 128 nodes, and a time step of 1.5
microsecond; att D 0, the flow outside the cavity is air uniformly distributed atP D 10 kPa,T D 300 K, andM D 2, while the air inside
the cavity is set toP D 100 kPa,T D 2000 K, andM D 0.

time. The flowfield att D 0 for x2 � 0 is set to a pressure of 10 kPa, a temperature of 300 K and a flow Mach number of 2,
while for x2 < 0, the pressure, temperature and Mach number are set to 100 kPa, 2000 K and 0 respectively. The solution is
iterated in pseudo-time starting from the converged solution of the previous physical time step until the maximum value� in
the computational domain falls below�verge. The physical time step,�t , is fixed to1:5 microsecond, while the following user
defined parameters are in use:

� D 0:3; �verge D 100
1

s
; 'verge D 5000

1

s
; �1 D 20; �2 D 3; and �3 D 9:

Due to the strict convergence criterion utilized and the useof the same residual, all acceleration techniques result inthe
same answer at all time steps despite noticeable differences in CPU work, as Table 5 attests: a twofold decrease in work
is achieved through the use of the multizone cycle, while thesweeping-window/multizone cycle decreases the work by one
quarter. The performance of the sweeping-window is not particularly good for this problem as the wave propagation direction
is more towards time than in the streamwise coordinate due tothe relatively small physical time step. Furthermore, since only
20 effective iterations are needed on average per time level, the overhead work induced by sweeping becomes more important,
as the greater discrepancy observed for this case between the reduction in effective iterations and CPU work shows. There is,
nonetheless, a non-negligible fivefold reduction in storage when using the sweeping-window.

8. Summary and Conclusions

A novel acceleration technique is presented which is aimed at accelerating the convergence of the Favre-averaged Navier-
Stokes equations in the supersonic/hypersonic regime for flowfields with large streamwise separated flow regions. Similarly
to the active-domain method [13], the marching-window iterates in pseudo-time a band-like computational domain of minimal
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width which adjusts to the size of the streamwise elliptic regions when encountered. However, contrarily to the active-domain
method, it is shown that the marching-window guarantees theresidual on all nodes to be below a user-defined threshold when
convergence is reached, and hence results in the same converged solution (within the tolerance of the convergence criterion) as
the one obtained by standard pseudo-time marching methods.Further, a streamwise ellipticity sensor based on the Vigneron
splitting [1] is developed which ensures the downstream boundary of the marching-window to advance sufficiently such that
regions of significant streamwise ellipticity are contained within the marching-window subdomain. It is noted that while the
Vigneron splitting sensor does not capture all possible streamwise elliptic phenomena, this does not affect the accuracy of
the final solution and only affects the performance of the marching-window as an acceleration technique. Also, a multizone
decomposition is implemented inside the marching-window to restrict the computing to the zones where the residual is above
the user-defined convergence threshold. This is shown to further decrease the work needed for convergence by close to 2 times
for the problems shown herein.

The use of the marching-window with multizone decomposition on a backward facing step and a shock boundary layer
interaction flowfield (where one or several large streamwiseseparated region is present) reveals a 4 to 6 times decrease in
storage and a 4 to 8 times decrease in work compared to the standard cycle. The proposed algorithm is also shown to work well
at a low CFL number in regions of quasi-hyperbolicity/parabolicity and is recommended for stiff problems with high non-linear
stability restrictions on the time step size. A variant of the marching-window designed for time-accurate simulationsis observed
to result in a fivefold reduction in storage and 25% reductionin work for the time-accurate exploding cavity case investigated
herein. The reduction in computational work through the useof the marching-window is made possible by focusing the high
number of iterations needed to converge the streamwise separated regions to the region in question. The amount of storage
needed is also significantly reduced if no memory is allocated to the nodes outside of the marching-window subdomain.

The marching-window does not impose any restriction on the discretization stencils part of the residual or on the pseudo-
time stepping method. While not implemented here, the numerous acceleration techniques available for pseudo-time stepping
(such as multigrid, block relaxation [31], preconditioning, Newton-Krylov,etc.) can be used in conjunction with the marching-
window. Furthermore, the marching-window is not limited tothe Favre-averaged Navier-Stokes equations and its extension to
other governing equations would only require a redefinitionof the ellipticity sensor shown in Eq. (39).

The performance of the algorithm is seen to be sensitive to the user-defined ellipticity threshold constant'verge and the
marching-window minimal width�3. It is unclear at this stage by how much these parameters would need to be altered for very
different flow properties and physical domain size. The dependency on the problem setup seems not too severe as the same
values for the user-specified constants are used for all cases shown in this paper.
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[19] YEE, H. C., KLOPFER, G. H., AND MONTAGNÉ, J.-L., “High-Resolution Shock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows,”

Journal of Computational Physics, Vol. 88, 1990, pp. 31–61.
[20] BATTEN, P., LESCHZINER, M. A., AND GOLDBERG, U. C., “Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent

Flows,” Journal of Computational Physics, Vol. 137, 1997, pp. 38–78.
[21] PARENT, B. AND SISLIAN , J. P., “Turbulent Hypervelocity Fuel/Air Mixing by Cantilevered Ramp Injectors,”Proceedings of the 10th AIAA Interna-

tional Aerospace Planes Hypersonics Technologies Conference, Kyoto, Japan, April 2001, AIAA Paper 2001-1888.
[22] BRILEY, W. R. AND MCDONALD , H., “Solution of the Multidimensional Compressible Navier-Stokes Equations by a Generalized Implicit Method,”

Journal of Computational Physics, Vol. 24, 1977, pp. 372–397.
[23] BEAM , R. AND WARMING , R. F., “An Implicit Factored Scheme for the Compressible Navier-Stokes Equations,”AIAA Journal, Vol. 16, No. 4, 1978,

pp. 393–402.
[24] PATANKAR , S. V.,Numerical Heat Transfer and Fluid Flow, Taylor and Francis, 1980.
[25] MACCORMACK, R. W., “Iterative Modified Approximate Factorization,”Computers & Fluids, Vol. 30, No. 8, 2001, pp. 917–925.
[26] YOON, S. AND JAMESON, A., “Lower-Upper Implicit Scheme for High-Speed Inlet Analysis,” AIAA Journal, Vol. 25, 1987, pp. 1052–1053.
[27] WILCOX , D. C.,Turbulence Modeling for CFD, DCW Industries, 1994.
[28] LANEY, C. B.,Computational Gasdynamics, Cambridge University Press, Cambridge, New-York, NY, 1998.
[29] SAWLEY, M. L. AND TEGNER, J. K., “A Data Parallel Approach to Multi-Block Flow Computations,”International Journal for Numerical Methods in

Fluids, Vol. 19, No. 8, 1994, pp. 707–721.
[30] ROSENFELD, M., “The Alternating Direction Multi-zone Implicit Method,” Journal of Computational Physics, Vol. 110, 1994, pp. 212–220.
[31] DE NICOLA , C., TOGNACCINI, R., AND PUOTI, V., “Local Block Relaxation Method for the Solution of Equations of Gasdynamics,”AIAA Journal,

Vol. 38, No. 8, 2000, pp. 1377–1384.

23


