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The Use of Domain Decomposition in Accelerating the
Convergence of Quasi-Hyperbolic Systems

Bernard Pareritand Jean P. Sislidn

This paper proposes an alternate form of the active-domethadl [K. Nakahashi and E. Saitoh,
Space-Marching Method on Unstructured Grid for SupersbBhiws with Embedded Subsonic
Regions,AlAA J.35, 1280 (1997)] that is applicable to streamwise separategsfidcNamed
the “marching-window”, the algorithm consists of perfongipseudo-time iterations on a min-
imal width subdomain composed of a sequence of cross-stpéamas of nodes. The upstream
boundary of the subdomain is positioned such that all noges@am exhibit a residual smaller
than the user-specified convergence threshold. The advesmtef the downstream boundary
follows the advancement of the upstream boundary, excegtrias of significant streamwise el-
lipticity where a streamwise ellipticity sensor ensuresibntinuous progress. Compared to the
standard pseudo-time marching approach, the marchindemidecreases the work required for
convergence by up to 24 times for flows with little streamvefipticity and by up to 8 times
for flows with large streamwise separated regions. Stoageduced by up to six times by not
allocating memory to the nodes not included in the companali subdomain. The marching-
window satisfies the same convergence criterion as theatdpdeudo-time stepping methods,
hence resulting in the same converged solution within therdace of the user-specified con-
vergence threshold. The algorithm is not restricted to ardigzation stencil and pseudo-time
stepping scheme in particular, and is used here with theR@escheme and block-implicit
approximate-factorization solving the Favre-averagedi®teStokes (FANS) equations closed
by the Wilcoxk w turbulence model. The eigenstructure of the FANS equaisoalso presented.

1. Introduction

HERE is little doubt that the most efficient way to solve sigpaic or hypersonic flow with no streamwise ellipticity is

through a space-marching method, as numerous extremeligaffmarching methods developed over the years can attest
(see for example Refs. [1, 2, 3, 4, 5]). The Navier-Stokesaggns at supersonic speeds do, however, exhibit soméiatyp
in the marching direction through the streamwise viscoumgeand the subsonic layer of the boundary layer, and it isssary
for a space-marching method to ignore these mechanismavigga reduced set of the original equations of motion, sagh
the parabolized Navier-Stokes equations (PNS). The PN8edireed here as the equation set obtained from the Navi&eSto
equations by neglecting all viscous terms in the streamdiigztion and by modifying the streamwise momentum equatio
to prevent any pressure disturbance to travel upstreamg wdiaracteristics splitting or pressure splitting as sstgd by
Vigneronet al.[1]. The applicability of the space-marching methods istim to flows with negligible streamwise ellipticity,
hence preventing their deployment to many practical flod$el

The need to tackle streamwise ellipticity prompted the tgaent of the “global iteration” space-marching methads i

which a sweep is performed several times on the entire catipaal domain to permit the upstream propagation of inftram
(see Ref. [6] for a detailed review). Such are characterizethpared to the pseudo-time marching schemes, by a smaller
memory requirement due to the storage of temporary vasablene marching plane only and by enhanced wave propagation
mechanism in the streamwise direction. The reduced N&tiekes (RNS) equations, which are derived from the Naviek<s
equations by ignoring all streamwise diffusion terms butaltering the momentum convection terms, are usually shilv¢his
manner leading to fast convergence of subsonic/supersteamwise unseparated flows [7, 8, 9] and even of viscaustid
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interactions creating streamwise separation [10, 11].dimdlar vein, Bardina [12] shows that significant reductionvork is
achievable by the use of global marching sweeps to solveuthdlévier-Stokes equations for high-speed flows. Howeler,
not limited to some predetermined zones of the computdtioraain, the global iteration approach loses some perfocma
when solving large reverse flow regions, as the number of gsvean become excessive due to its dependence on the size of
the separation bubble. Further, some computing might bifidiemtly allocated to the nodes downstream of the separati
bubble,prior to its convergence. These deficiencies can be remedied by asspace-marching scheme solving the PNS
equations until an elliptic/reverse flow region is encowediethen switching to a global iteration RNS method for #hegth of

the elliptic region, iterating until convergence is reatthend pursuing with the marching PNS scheme (see Miliat. [6] for
instance). However, such a strategy forces the solutiohe@PiNS equations in certain regions of the flowfield for whiud t
PNS assumption might induce appreciable errors. The acgofahe final solution is hence strongly dependent on thitybi

of the method at predicting correctly which regions of thevfleld can be accurately predicted with the PNS equationd, an
which regions require the use of the RNS equations.

Recently, a novel approach at solving inviscid supersobig fkith embedded subsonic regions has been proposed [13].
The method, named “active-domain”, consists of perfornpisgudo-time iterations on a small band-like computatidoedain
that advances in the streamwise direction every time thdualof the active-domain near the upstream boundarylialiew a
user-defined threshold. Using sensors based on the stresarommponent of the Mach number, the active-domain bousglari
automatically surround any locally subsonic region, onchtsufficient iterations are performed to reach steady-sthen the
residual inside the subsonic region decreases below thredafieed threshold, the active-domain advances past thsosic
region further downstream. By marching in the streamwiseation, the active-domain results in a decrease in workpof u
to 10 times compared to standard pseudo-time marching mietioo several inviscid problems. However, the ability of th
active-domain at solving accurately a streamwise ellipggion is limited by the accuracy of the sensor responsiidte
upstream movement of the upstream boundary of the activgatio Extension of the active-domain method to viscous flow
is hampered by the difficulty of formulating a streamwisépdiltity sensor that captures all significant upstream pgating
waves while restricting the size of the active-domain to aimum. Success has been reported in solving viscous flowoutith
streamwise separation by maintaining the active-domadtthneéqual to the height of the boundary layer [14]. Howewethe
authors’ knowledge, the active-domain method has not yer lextended to streamwise separated flows.

This paper proposes an alternate form of the active-domaihaoad, named the “marching-window” algorithm, that is
applicable to streamwise separated flows. Similarly to thee-domain, the marching-window performs localizedyak®time
stepping on a subdomain composed of a sequence of croasagifenes of nodes. The width of the marching-window deeeas
to only a few planes in regions of quasi-hyperbolic flow andréases to the size of the streamwise-elliptic region when
encountered. However, in contrast to the active-domaioréthgn, the marching-window is strictly a convergence és@gion
technique as it guarantees the residual of all nodes to lmevlibe user-defined threshold when convergence is atta@met],
hence does not maodify the final solution as obtained with gtaridard” pseudo-time stepping schemes. This is accdmaplis
by keeping the residual upstream of the marching window sotain updated at all times, and by positioning the upstream
boundary such that the residual of all nodes upstream isabible user-defined threshold. This results in an algorithat th
captures all upstream propagating waves affecting theuabsignificantly. The upstream propagating waves cariraig
from (but are not necessarily limited to) large subsonidkets; streamwise separation, streamwise viscous fluxelsediux
limiters in the streamwise convection flux derivative, fostance. Further, to enhance the performance of the diguorit
sensor based on the Vigneron splitting [1] is developed tmade the downstream boundary when significant streamwise
ellipticity is detected.

Several numerical experiments are presented ranging fnenintziscid solution of a supersonic inlet with a blunt lead-
ing edge to turbulent shock boundary layer interactions wiinsiderable streamwise flow separation solved with tiveeFa
averaged Navier-Stokes (FANS) equations closed by #héurbulence model of Wilcox [15]. A time accurate turbuleotfl
field using dual time stepping is also investigated. A congarbetween the marching-window cycle, the active-dorowite
(for the inviscid case only), and the standard pseudo-timehing cycle is made on the basis of CPU time, effectivaiiens,
and storage.
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2. Governing Equations
The residual of the full Navier-Stokes equations can beesgad in generalized coordinates in tensor form for any euiwib

dimensions as , ,
oF; 0 0G
R = — — | K;i— )| -S, 1
> San (0i0)] g

Jj=1

where the minimization oR is sought and wheré refers to the number of dimensions. Due to the non-lineafithe system
of equations, a fictitious unsteady tedif? /9t is necessary to obtain the right physical root from a givéo&aitial conditions,

ie. 20

5 = —R. 2
Even though the marching-window method presented in thigpalong with the discretization and pseudo-time stepping
schemes are not linked to some governing equations in pktiaghis study focuses on the Favre averaged Navier-Stoke
equations (FANS) closed by the Wilcox two-equatian model [15]. Thekw turbulence model is chosen due to its capability
at solving accurately a wide range of realistic flowfields,lesimaintaining a close resemblance in form to the classi&l
equations and avoiding the use of extra low Reynolds nunelpers (present in thiee family of turbulence models for instance).
Aside their inelegance, additional low Reynolds numbenteare detrimental to the performance of the algorithm breiasing
the complexity of the source terms which results in biggesimes necessary to attain grid convergence, and by incgethan
stiffness of the governing equations which often translat® increased convergence time. This is avoided by #henodeling
which induces a conservative varialfle a convective fluxF;, and a diffusion tern of

© o ] - oV 7 1 7
PU, pVivy + X; P* Uy
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pE pViH T
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where the notatioX’; ; stands folX;/dx, andJ is the metric Jacobian, both of which obtainable in any disi@mfollowing
the approach of Viviand [16] and Vinokur [17]. The total emerenthalpy and effective pressure include molecular arimitent
properties,

E=e+k+lzd:v.2, P*=P+%pk, andH=E+P*, (4)
2 ! 3 o

i=1

with e the internal energy of the gas, the velocity component in the Cartesigndirection andc the turbulence kinetic energy.
Calorically perfect gas assumptions are used to deterrhméternal energy from the temperature while an ideal gasda
assumed in finding from p andT.

Starting from the tensorial form of the governing equation€artesian coordinates, it can be shown that the condtyctiv
matrix K;; corresponds in curvilinear coordinates to

0 0 .- 0 0 0 0
0 n* il_/l T wr il_/d 0 0 0
. B : . : : : : ]
ij = 7 0 /\,L*IB[(I;I M*ﬂld/‘l 0 0 0 ’ ( )
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where the diffusion coefficients include a molecular anduilent contribution function of the eddy viscosjty = 0.09pk /w,
molecular viscosityr and molecular thermal conductivity that is,

W= pbme K=k Gl pr=p b B and = v B (6)
0.9 2 2
while ¢ andg are function of the metrics only,
- 2
o = ZXi.kX/.k and B/}" = oS+ Xjm X — §X/'.nXi.m7 (7

k=1

wheres! stands for the Kronecker delta, which vanishes shoulhdn differ, but assumes a value of unity otherwise. The
source tern® is composed of the sum of the baseline Wildax source terms [15] and an unsteady source term,

1 0 30
J Py — pko ot ’

w (5 5
T (9 k 6'0 a))

where the turbulence kinetic energy production tetyrcan be shown to correspond to

2 2 i v; <  omn Um0V,
P = ZZ 3P Xi._/ﬁ + Z ZM B X, 0X, | 9)
i=1j=1 ! !

m=1n=1

(8)

Itis noted that in the Wilcokw model k is set simply tak which in the freestream is set to a small value to preventiaidiv
by zero. We prefer, however, to specify= 0 in the freestream and, in order to prevent a division by zerthe dissipation

rate source term, to defikeas
% = max[k ., min (kdiv , %)} , (10)
p

with k4, a user-specified constant which is generally set lower thrantenth of the maximum value @f throughout the
boundary layer. This is verified numerically not to affeat thminar sublayer but to improve the robustness and eftigieh
the integration significantly. The minimum between andwi/ p is taken so that a clipping occupsly in non-turbulent flow
regions in which an accurate representatiom afoes not affect the accuracy of the flowfield.

3. Discretization

The discretization of all terms in the residual is now présén The use of tensor form in writing the governing equaion
in curvilinear coordinates shown in Eq. (1), along with thréque compack;; matrix described in Eq. (5), simplify greatly
the discretization and practical implementation of thewiss terms: less than 100 lines of code are needed to impteheen
viscous contribution of the residual for all € [1, 2, 3]. By referring to the discretized form of the derivativesrajdhe X;
coordinate by, , the discretized residud, can be written as

Ra=)_ [(SX,. F, =) 8y, (K,,.ngG)] -, (11)

i=1 Jj=1
where the diffusion terms are discretized using seconéradcurate centered finite difference stencils which, lshoe= j,
give,
(B (Kb, G)] = K32 (G = G4 — K (G4 = 6Y). (12)
and, should # j, give,
[5)(1. (KijSXj G)]Xi.Xj =
%K[i{iJrl/z.Xj (GX,-,X,-+1 4 GXitLXj+ _ GXi X1 _ GX,—+1,X,-71) (13)

_ ZI‘K[.X;IA—I/ZXI‘ (GXi_l'Xj+l + GXi~Xj+l _GXi—l.Xj—l _GXi~Xj_l) ,
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where K *i™1/2 midway between nodes is taken as half the valu& &f*! and K*i for example. The convection terms are
discretized using a conservative form of the Roe scheme [u8hed second order accurate through a symmetric minmod
limiter by Yeeet al.[19]:

1] o TLTMINGTYTE T AN T
[8xiE]X’=§[EX’+I—EX’1—[7’ e e (14

where| ;| stands for the absolute value of the eigenvalues of the ctimedlux Jacobiad; = 0F; /00, and where

NS = MY —minmod(M,.X"’1 . MY Ml-X"“), (15)

1

with MY = L% ((JQ)X"“/Z . (JQ)XI'*”Z). (16)

In the above, the properties at the interface are deterniined Roe averaging [18]. For the minmod limiter to be in pseud
control volume form, it is necessary to ensure that all meé&ims needed to construct thematrix at one cell interface are
measured at that particular interface.

A small positive value can be added to the eigenvalues to éxafhysical carbuncle phenomenon originating from the Roe
scheme when tackling certain problems, especially bludids This is usually referred to as “entropy correctionit is just a
convenient way of adding artificial dissipation to the flugatietization [20] and can significantly deteriorate theuaacy of the
scheme in turbulent boundary layers (see for example seeshtained by Parent and Sislian [21]). Unless otherwiseipd,
no entropy correction term is used in this paper.

Finally, all partial derivatives of the source terms areBtized using second order accurate three-point steegitept for
the stencil of the time derivative term, which is limited dadet to,

1 |
8,0 = ~ |:Qr —QAM 4 5 mland(Q[ — QM QA Qz—zm)
(17

1
_E miand(Q’ _ Qtht’ Qtht _ Qt72At’ Qt72At _ QtBAz):| ,

where the minmod function returns the minimum of its arguteérthe arguments are all positive, the maximum if the argu-
ments are all negative, and zero if the arguments are of nsigg. It is noted that the second order contribution in Ed) {s

in non-conservative form, but, to the authors’ knowledgehsis unavoidable if no future value ¢f (at a timer + At) is in-
cluded in the stencil and a second-order accurate ste@atitébults in no spurious oscillations is desired. The nmmservation

of the stencil is weak and numerical tests indicate that Eg). jerforms well.

3.1. Eigenstructure of the Convective Flux Jacobian
Since the Roe scheme is used to discretize the convectioatiegs, the determination of the eigenstructure of thevective
flux Jacobiard; = dF; /0Q is needed. It can be checked by substitution that the fofigwliefinition ofA,,
—~ ~ D
hi=[Vi Vi = VitaRi Vi—aXi Vi V] (18)

satisfies the necessary relationship(det— w; /) = 0 (with w; any element on the diagonal af) and is hence a valid
eigenvalue matrix. Denoting the flow speeddgythe non-metric effective speed of sound is found to be egual

1

2 2
o= (Pp+§k+PpE (H_qz_k)) , (19)
which as might be expected is a function of the kinetic enefgyrbulence, contrarily to the “non-turbulent” speed ofiad

(here denoted by, _,) encountered in the eigenstructure of the convection terfitise molecular Navier-Stokes equations.
Dividing both sides of Eq. (19) by,—, and after some reformatting, the normalized speed of soandbe shown to be equal

to 1
Pot+1 \?
- =(1+%M2) , (20)

t
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FIGURE 1. Normalized speed of sound = a/a;—o versus the turbulent Mach number, M= 2k /a,—o, for a calorically perfect gas
according to Eq. (20).

where for a perfect gas},z + 1 is equal to the ratio of the specific heags, Figure 1 shows the relationship betweeand
the turbulent Mach number for = 7/5 andy = 5/3. As the turbulent Mach number increases, its influenca becomes
more predominant due to the relative speed of the turbulemices, with respect to the average vortex speed of dispiaat,
gradually overtaking the thermodynamic sound speed asfbemation propagation mechanism. For a perfect or realthas
derivatives of pressure with respect to the mass-weiglotatiénergy and density are equal to

1 0
Pr=—F5—7—— and P,=- pE(E_qz_k'Fp%e(Pvp))’ (21)

ad
pﬁe(P, p)

with e the internal energy of the gas and where it is assumed thahanynodynamic property can be obtained from only two
others. The right eigenvectors are not unique, and eaclmeodd the matrix can be multiplied by a constant other thare@eh

we choose the multiplying constant of each column such asép khe same units along each row, except for the last column

which is further multiplied by:? /@ which is found to result in faster convergence:

1 0 - 1 1 0 0]
X; X;
vy IMa — v1+a,\ : U1—a/\ - 0 0
X, X;
N
X; X;
L= 19 > oy i, 4% 0 0 (22)
Xl' Xi
2 ; V V 2a”
H-2 Yl tav, — H+a,\ H_aT S 0
Pok X, X 3Ppr
k 0 — k k a? 0
0 — 1) 10) 0 a’?

The exactness of the right eigenvectors can be readily e@tify the relatiorh;, = L; A; L7'. Note that the columns of the right
eigenvectors containingy’” are not needed in one dimension, while in two dimensift§,takes on the form

I = (—1)m+lXi.m+1/§iv (23)
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and in three dimensions, becomes,

m? = Xi,m+1lfm+l'1§Xi.m+2l,'m+2,1 | "

Xi.m+2 _Xi.m+1

[ijl (Xij+1— Xf,j)z]l/z |

m,1
Zi

In the above)?,- corresponds to the magnitude of all derivativesefthat is,

1

X = (Z Xf].) . (25)

4. Pseudo-Time Integration

Using implicit Euler pseudo-time marching the delta fornttaf discretized equations can be shown to correspond to

AnQ d . d ) )
Az + ; |:8XiA F; — ZSX,' (Ki._/SXjA G):| —A"S = —R,, (26)

Jj=1

where to minimize storage requirements and the inversitortehe LHS is approximated using a multiplication of one-
dimensional operators based on a block-implicit approénfiactorization algorithm [22, 23] and a linearizatiorastgy of
the viscous terms by Chang and Merkle [8]:

d d
[]‘[ (1 + At8y, A — AT Y 8y, (Kis8x, B) — ArS‘f;C_):| A"Q = —ATR4, (27)

i=1 Jj=1

wheres!; is the Kronecker deltaB the linearization Jacobian of the viscous terBs=£ dG/0Q), andC;~ the linearization
Jacobian of the negative source terS{/0Q) forthei = 1 sweep butignored for the other sweeps. Only the negativesou
terms are linearized to ensure the stability of the imphtgiorithm [24] and are set to

S = — —okw = 28
y P (28)

The termﬁm is symbolic and stands for the linearization of the firstesriloe scheme with the Roe Jacobian locally frozen.
The use of a fully linearized Roe scheme is shown in Batfieal. [20] not to decrease the number of iterations needed for
convergence for several test problems (in some cases ieis @strimental) while requiring more work per iterationritthe
frozen Jacobian approach. Hence, the equation to solvehmneale for theth sweep can be written as

Yl LD AN
_Kl ZBXifl_ 4 _ ‘ AQil +|:

. —3; Cc—Xi
ii 2(J )X 2 1

At¥Xi

' LAL)Y (I LA L))
2(J 1)

+(Kki

X;+%

+ Ky ) B+

] AQYi + (29)

I~y
20 H% e

41
[—KX#% g UTLTALT Af"'“} Gxi+
whereAQ," = —At¥i RX" and the total flux incrememt Q% is set toAQ .

Itis emphasized that the success of approximate factmizedlies on the degree of invariance of the linearizatiatrioes,
deterring the inclusion of a linearized form of the minmaditer on the implicit side. Numerical experiments show that
“switch” type of algorithm on the implicit side might induegratic patterns in the convergence history sometimesptag
a converged solution altogether. For similar reasons nipdi¢it treatment of the cross diffusion terms is not recoemaled as
their linearization necessarily involves spatial derixeg which are subject to change from iteration to iteration
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FIGURE 2. Examples of the distribution of the node types for a backviacing step (left) and a two-element airfoil (right); thember “3”
represents a wall condition, “0” inflow, “1” outflow, while *#epresents inner nodes and “.” is used for unactivated fiode

Block-implicit approximate-factorization is chosen hait is still one of the most used techniques in solving tha-co
pressible Navier-Stokes equations in the hypersonic rafgeever, it is noted that the use of a different pseudo-timeching
algorithm (such as DDADI [12], MAF) [25], or LUSGS [26]) has been observed by the authors ndféctahe performance
gains obtained with the marching-window algorithm preedrterein.

4.1. Local Pseudo-Time Step

One commonly used acceleration technique is local pseiutmstepping based on the CFL condition which results in aewav
traveling speed of one node per iteration for convectionidated flows. However, in multiple dimensions, each dimemsi
assumes a different CFL condition and one faces the dilenfisyzeaifying a wave traveling speed proportional to the disien
exhibiting the lowest CFL condition, commonly referred ®aminimum CFL based local time step, or to the dimension
exhibiting the highest CFL condition which is referred toaasiaximum CFL based local time step. A formulation including
both the minimum and maximum CFL based approaches can taKertin

o 1—o
d 1 d 1
At =CFLmax{ ———— | min{ ———— , (30)
i=1 |I/,|+aX, i=1 IKI"'QX,

where ar varying between 0 and 1 induces a time step of a magnitudgsduespectively between a minimum and a maximum
CFL based time step. While it is acknowledged that for visodominated regions, a local time step based on the Von Neuman
number (VNN) would result in a more equitable wave propagmatvhich might translate into faster convergence, for the
purposes of this paper Eq. (30) is used exclusively.

5. Boundary Conditions

A multiblock stratagem is generally required when tackiognplex geometries with a structured mesh, but it can saamifly
complicate the implementation of the domain decomposélgarithms presented herein for reasons that shall becpparant
shortly. As a substitute to using multiple blocks connedtethe geometry and to one another through their outer edges (
planes in 3D), any node that is part of the computational doensaallowed to be either a boundary, inner or inactive node.
Although not as multipurpose as the multiblock, such an @g@gin can be used to solve a wide variety of flowfields while
retaining all the simplicity of a single block. Figure 2 shgvior example, how the node types would be distributed for a
backward facing step and a two-element airfoil.

Zeroth order extrapolation polynomials are used to obtaengroperties from the adjacent inner node at the supersonic
outflow boundary (hereafter referred to simply as outflowrmary), while the properties at the supersonic inflow (hiéeea
referred to as inflow), are unaltered in pseudo-time. At theraetry boundary node, a first order extrapolation polyrabwifi

the form
4 1

I//.X — 51//.X-ﬁ-l _ ng+2’ (31)
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FIGURE 3. Example of computational domain and subdomain notatidw® dimensions; the computational domain limits are desdty
the superscripts E and S.

is employed to obtaiP*, k, w, p and the velocity components tangent to the surface, whil@énpendicular velocity compo-
nent is set to zero. At the wall, the turbulence kinetic epanyd the velocity are fixed to zero, while the effective puessand
temperature (in the case of an adiabatic wall) are extrégublas in Eq. (31). Also, following Wilcox [27], the dissipat rate
at the wall is specified to

36 u
wy = ?Fﬁ

with d,, the distance between the wall node and its nearest neighbor.

It is well known that an implicit treatment of the boundarydes results in less prohibitive restrictions on the psetirde-
step size for some problems, but when solving strong shooksvar other highly non-linear phenomena it is not uncommon
for the time step size to be limited in any case by the flow pigyseven if the time stepping scheme can be shown to be
Von Neumann unconditionally stable (see the chapter onineai stability in Laney [28]). Moreover, experience shadtnest
treating the boundary conditions presented herein in aliocfxmanner does not restrict the size of the local time stepe
than implicit boundary conditions would. For all numerieaperiments presented, an explicit treatment of the baynuzdes
is chosen.

: (32)

6. Domain Decomposition Algorithms

While domain decomposition is generally used for parath@hputing purposes or used to enable the implementatiofffefeint
discretization/integration methods in different subdoreait is utilized here as a means to accelerate the conveegs quasi-
hyperbolic systems. We define as quasi-hyperbolic a systesguations 1) which is elliptic, 2) where some of the terms,
but not all, can be regrouped to form a hyperbolic set of éqnaf and 3) whose solution is very close to the solution ef th
hyperbolic set of terms. For instance, the steady-statéeN8tokes equations in the hypersonic regime away frorstinaces
would exhibit a weak influence of the diffusion terms (resgible for the ellipticity of the system) on the solution coangd

to the convection terms (the hyperbolic set) and would hdxecelassified as quasi-hyperbolic. Similarly, a quasi-palia
system is defined as a system of equations 1) which is ellipjiszvhere some of the terms, but not all, can be regrouped to
form a set of parabolic equations, and 3) whose solutionfig e#@se to the solution of the parabolic set of terms. Ther€&av
averaged Navier-Stokes equations closed bykthemodel solved at steady-state over a turbulent flat plate dvbaltermed
quasi-parabolic, as the streamwise diffusion terms andiplseream component of the convection terms play a negligidde
compared to the other terms.
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The acceleration techniques presented in this paper ardaatnreducing the work needed to solve quasi-hyperbolic or
quasi-parabolic systems through the use of domain decdtigrosNonetheless, the effectiveness of the methods i§imaed
to entirely quasi-hyperbolic/parabolic systems and edden systems where some regions are quasi-hyperbolibiparand
others strictly elliptic. It is emphasized that domain deposition is used here solely as a convergence acceletatibnique,
anddoes notmodify the discretized residual, the time stepping schemmed the convergence criterion, except in the case of
the active-domain method. Convergence is attained indkgrgly of the acceleration technique when

€ < &verge ¥ iNNer nodes (33)
with £ a convergence criterion based on the maximum between tbeetiled continuity and energy residuals,

|R(;Aontinuity |Rznergy|
J=lp * J-pE )’

£ = max( (34)
which is divided byQ to obtain units involving only pseudo-time«. é). The user-defined convergence threshilg. is
typically given a value of 10@, yet this value is not universal and is dependent on the fltshdiehand. Based on dimensional
analysis argument§,.. can be thought of as the inverse of a time scale common fobdk#, which we formulate in terms of
the free stream flow speed and a characteristic length,

1 ¢oo
verge ™~ T~ T, 35
e ~ T (35)

where an analogy can be made to the time needed to obtairystedd flow using an experimental setup. The characteristi
length L, can be taken as the length of the domain for instance. It sthditowever, that the efficiency of the domain decom-
position methods presented herein is dependent on thesfmecifé as a convergence criterion, and since this varies from one
flow problem to the next, it might not always be possible ta@ahat first the proper compromise between optimal convege
rate and acceptable accuracy by using Eq. (35).

Identifying the limits of the computational domain B§# and XF with i € [1. ..., d] and the limits of a subdomain by?
and X7, with i € [1,...,d] the region spanned by the subdomain is referred to by theiootaX® < X?|v;, as shown in
Fig. 3. For a subdomain with limits different from the comgidnal domain limits in only one dimension the notatjoki?
& X¢ ||, is employed, where it is implied that the limits in the dimiems other than theth do not differ from those of the
computational domain (see Fig. 3). AlgpX; ||, is a shortcut that stands for the subdomjpiy < X |,. A property that
is used in conjunction with the domain decomposition alipons is the number of nodes of dependence of the discretized
residual p,., which is defined as

the maximum number of nodes on which the discretized
residual depends on each side of the center node

b, =14 or, (36)

half the maximum discretization stencil point minus one
if the stencil is symmetric

For example, the minmod TVD discretization stencil (whishhe longest of all stencils contained in the residual) WaiNe
b, = 2 but should a first order Roe scheme be employed insteadpth@nuld be set to one. Similarly, the number of nodes
of dependence of the boundary nodes is defined as

__ | the maximum number of nodes any boundary node depends

by =1 on along one directian (37)

which is set to 2, since the properties at the boundary nagesxérapolated from at most 2 inner nodes using a blend oftzer
and first order extrapolation polynomials.

When the nodes comprised in the subdonjaiif < X? |v; are updated in pseudo-time, then it follows from the debniti
of b, that the boundary nodes situated ins|d€’ — b, < X7+ b, |v; must be updated. The residual, which depends on both
inner and boundary nodes must then be updated betjgen b, — b, < X7+ b, + b, ||v:. In many cases where there are no
boundary nodes situated in the regioki; — b, < X7+ b, |v;, it is sufficient to update the residualiiX?—b, < X7+ b, |v:.
For all methods presented in this paper, however, this shiog not implemented.

10
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6.1. Standard Cycle

The “standard cycle” here implies the usual way of updatirggolution in pseudo-time, by first finding the residual fibr a
nodes and then updating the solution. The algorithm can kitewin the following steps:

1. update the boundary nodes in the domja¥} < XF |v:,
2. update the residual in the dom4iX?® < XF .,
3. updateQ (by pseudo-time stepping) in the domdiNs < XE |,, and,

4. convergence is attained Whgre &, in the domain| X7 < XF|v;.

6.2. Multizone Cycle

One strategy towards improving the standard cycle is taddithe computational domain into a number of non-overlappin
zones of approximately equal size and to update in pseuag®dnly the zones in which > £, This stratagem has been
previously employed by Sawlest al. [29] as a convergence acceleration technique for superfionis, but where the compu-
tational domain is split into several blocks, instead ofesal/zones. Note that a “zone” is defined as a computatiomahéo
region that can be bounded by boundary and/or inner nodeddsexample Ref. [30]), while a “block” is defined as a region
delimitated by boundary nodes only. The zone length in eaoleision is set to at mos,, a user specified constant usually
given a value of 20. At each iteration, should the maxinguimside each zone be greater than the user-specified thagshgpl
the inner nodes up to the zone boundaries are updated ingsieus], followed by the update of the boundary nodes up to the
zone boundaries expanded hy; and the update of the residual up to the zone boundariemdgdadyb, + b,. The residual
and properties of all other nodes of the computational doraeé not altered. Prior to the first iteration, the compatsl
domain is divided into a number of non-overlapping zonesafith in each dimension no greater tlignwith each zone
defined by the subdomajnX;/* < X;°|v;. Then, at each iteration, the following steps are performed

1. for each zone, updateQ (by pseudo-time stepping) in the subdompiXi’* < X7 |v; if & > &g in the subdomain
| X7 & X7 vi,

2. for each zone, update the boundary nodes in the subdomy@ti* — b, < X;7° + by, ||v; if £ > &.ene in the subdomain
|| XiZ,S <:> XiZ,e ||V,',

3. for each zone, update the residual in the subdompiXi’* — b, — b, < X7 °+ b, + b, |v; if £ > &.eqein the subdomain
” Xiz,s <:> X’_Z,e ”Vi, and,

4. convergence is attained Whers &, in the domain| X? < XT |v:.

It is noted that the multizone cycle ensures the residualllomdes to be up to date after each iteration but, due to time no
self-starting property of this cycle, it is necessary to pote the residual on the entire domain before the first itaras
performed.

6.3. Active-Domain Cycle

The active-domain is an algorithm aimed at decreasing thé weeded for convergence of supersonic inviscid flow [13]
and refers to a band-like computational domain marchindghanftow direction in which localized pseudo-time stepping is
performed. The domain width automatically adjusts to ttee gif subsonic regions when encountered by monitoring the
streamwise component of the Mach number, as shown in Fig. dud notation, the active-domain algorithm can be written a
follows, denoting the left boundary of the computationatedw by X7 and the right boundary b¥;:

1. update the boundary nodes in the subdorf&if < X¢ |,

2. update the residual in the subdompiXi? < X¢ |,

3. updateQ (by pseudo-time stepping) in the subdompix® < X°¢ |,
4. redefine the active-domain boundaries:

(a) if M, < 1.001 for any node in the subdomajnX; < X7 |, then decreas& by one,

11
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FIGURE 4. Schematic of the active-domain cycle with the upstreathdownstream boundaries in equilibrium surrounding an eltbe
subsonic regiong, is the minimum width of the residual monitor subdomain gnds the minimum width of the active-domain (when no
subsonic region is present).

(b) if M, < 1.001 for any node in the subdomajnX ¢ — (¢5 — ¢o) < X¢ ||, then incremenk ¢ by one,

(c) if & < &uergefOr all nodes in the subdomajnX? < X7 — (¢ — o) |: then incremenk ¢ by ¢, and setX? = X7 —¢;,
and,

5. convergence is attained wherx £, for all nodes in the subdomajnX; < X¢|; and whenX? = XT.

The size of the residual-monitor regig and the size of the active-domajs are user-specified constants typically given
values of 4 and 9 respectively. It is emphasized that thevexckbmain is restricted to inviscid flow due to the “elliftyc
sensors” in Steps 4a and 4b being based on the streamwiseoentmf the Mach number. For viscous flows, this would
effectively enlarge the active-domain to the size of anyobglue to the vanishing value of the Mach number in the \ticioi

a wall. Aside from being restricted to inviscid flow, the &etidomain algorithm does not guarantee that &,.,. for all nodes

of the computational domain when convergence is attainkis. i¥ due to the assumption in Step 4a that streamwiseieiltypt

is present locally only when the streamwise component oftheh number is less than 1. For inviscid flow, this is exaathet

if the discretization stencil of the streamwise convectienivative is upwinded (such as the first-order accurate $8¢beme
for instance), but is not true for the Yee-Roe scheme usegirhdue to the Yee flux limiter being a function of downstream
nodes, even when the flow is locally supersonic. Thereforenased in conjunction with a flux-limiter inducing streaisev
ellipticity in supersonic flow, the active-domain does n@&atnthe necessary convergence criterion for a well-posegleration
technique [as stated previously in Eq. (33)].

6.4. Marching-Window Cycle

An alternate form of the active-domain cycle that permits $blution of viscous streamwise separated flows and satitiie
convergence criterion of Eq. (33) is here presented. Nahethfarching-window, the algorithm differs from the actiemain

on three points, namely 1) a dynamic outflow boundary is f@ethe downstream boundary of the marching-window (see
Fig. 5), 2) the ellipticity sensor responsible for a shifinistream of the downstream boundary of the marching-winidow
based on a Vigneron splitting of the streamwise pressuiieadize instead of the streamwise component of the Mach raymb
and 3) the upstream boundary of the marching-window is ot such thaf < £, for all nodes upstream, instead of
being a function of a residual monitor region and a streamwlBpticity sensor based on the streamwise componenteof th
Mach number. At the first iteration, the upstream boundarthefmarching-window is set to the upstream boundary of the

12
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FIGURE5. Schematic of the marching-window cycle with the upstreaeh downstream boundaries in equilibrium surrounding alpesited
streamwise elliptic region which is bounded upstream byctradition¢ < &, and downstream by the conditi@n < ¢.eqe @ dynamic
outflow boundary condition is forced on all inner nodeg X | ; .

computational domain with the downstream boundary of thechiag-window separated from the upstream boundary, by
nodes. Denoting the upstream boundary of the marchingawrsy X; and the downstream boundary &, the marching-
window cycle can be written as:

1. updateQ (by pseudo-time stepping) in the subdompixiy < X |,

2. update the boundary nodes in the subdofiaifi— b, < X7 |,

3. update the residual (hen&g,in the subdomait X7 — b, — b, < X¢|,
4. redefine the marching-window boundaries:

(@) find the maximum value faX; such tha < £, for all nodes in the subdomajnX? < X5 — 1],

(b) everyg, iterations, ifp > @..q for any node in the subdomajnX® — ¢ < X¢|, orif X3 > X¢— ¢, then 1)
incrementX? by one, 2) update the boundary nodes in the subdoth&ih— 1 — b, < X7 ||, and 3) update the
residual in the subdomajnX¢—1—5, —b, & X¢—1],, and,

5. convergence is attained wherx £, for all nodes in the subdomajnXs < X¢|, and whenX? = XT.

The marching-window cycle is not self-starting and it mustemsured that the residual is updated for all nodes parteof th
computational window before the first iteration.

The ability of the marching-window at satisfying the coryemce criterion of Eq. (33) lies in Steps 1-3, whérés updated
in pseudo-time in Step heforedetermining the residual in Step 3. On@eis updated in Step 1 on the subdomiki; <
X¢ |, since a boundary node depends on at mgsteighbors, it is sufficient to update the boundary nodeserstibdomain
| X3 — b, & X7 |, to guarantee that all boundary nodes upstreatkifodire up to date after Step 2. Once the boundary nodes
have been updated in the subdomjpki® — b, & X7 [, since the discretized residual depends on at hoseighbors, it is
sufficient to update the residual in the subdomja¥f — b, — b, < X¢|; to guarantee that the residual of all nodes upstream of
X7 are up to date after Step 3. Singés a function of the residua$, upstream ofX} is up to date, and the upstream boundary
of the marching-windowX; can be positioned correctly in Step 4a by ensuring for allesagpstream ok’; thaté < £ This
serves two purposes: 1) the convergence criterion of EQlig3atisfied if convergenceis attained in Step 5, and 2) pstreiam
boundary of the marching-window moves upstream for anyrapst propagating wave that affects the residual signifizant
and raise§ above the user-defined convergence threshgld Contrarily to the active-domain, the upstream propagatiave
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is not limited to locally subsonic flow but includes aignificantstreamwise elliptic phenomena, such as streamwise sedarat
flow, streamwise viscous derivatives, or flux limiters in Hieeamwise convection derivative, for instance.

Step 4b advances the marching-window downstream boundeay the width of the window is smaller than a user-specified
constantps, or when the streamwise ellipticity sensois greater than the user-specified consgagy. for any node part of the
subdomairj X¢—¢; < X7 |,. The streamwise ellipticity sensetis here chosen as the component of the streamwise convection
derivative inducing a streamwise ellipticity. This is dexd, following an approach by Vigneraat al. [1], by multiplying by
¢ the effective pressure terms in the momentum fluxes partefstiteamwise convection fluk,. The eigenvalues of the
streamwise convective flux Jacobian witfrozen can then be shown to correspond to:

~ 1 - = 1 PN ?
/\1:|:Vls Vi, —, V1+§V1PpE(1—§)+a1Xls VI+EV1PpE(1_§)_a1X17 Wi, V1:| ,
. _ 1 2 s | 2 NIE
Then, for all the eigenvalues to share the same sign (a resgesandition for an hyperbolic system), it is required that

(38)

1+PpE :mln(l M12(1+PpE))

" X242 + V2P, 1+ M?P,

¢ = min (1, V2
where the streamwise Mach numbéy; corresponds td/, /a)?l. If multiplying by ¢ the pressure derivative terms part of the
momentum components 8f; /dX, results in a hyperbolic system, it follows that the compdréithe streamwise convection
derivative which induces a streamwise ellipticity Is-¢) times the pressure derivative terms part of the momentunpooents
of 0F, /dX,. The productis then normalized witta to obtain units of inverse pseudo-time:

X, 1—M2 \|op*
=—max{0, ——— | |—
pa 1+ P,eM?) |0X,

1< TARE
v=a {Z |:(1_§)X1’j3—X1i| . (39)

Jj=1

The ellipticity sensop makes two important assumptions: 1) the streamwise elliptriginating from the streamwise viscous
derivative terms and the flux limiter part of the streamwisevection derivative is assumed negligible, and 2) at thatpo
whereg is evaluated, the solution is assumed to be converged tdysttate. The first assumption is remedied by introducing
a minimum width of the marching-window,, which is typically given a value ranging from 9 to 15. Thea®sd assumption
can lead to some performance degradation of the marchindemi when the flow near the downstream boundary is far from
convergence. For this reason, the user-adjustable pagegnds introduced in Step 4a, with the consequence of evaluating
everyqg, iterations only. Therefore, a high value givengtphelps in ensuring a more converged solution near the dogarstr
boundary, and reduces the error in the ellipticity segsdue to temporarily non steady-state flow. It is suggestedviothe
ellipticity sensor thresholdg,... a value of about 100 times the one giver§ig,., that is,

ES
L.

Wuerge ~ 10 ) (40)
with L. a characteristic length of the system. In Step 4b, after threndtream boundary of the marching-window is advanced
by one station, the update of the boundary nodes in the subdd¥{ — 1 — b, < X7 ||, and of the residual in the subdomain
| X¢—1—b,—b, & X¢— 1], is necessary to ensure that the residual is properly updrated marching-window, which is
necessary for Step 1 to be performed correctly at the foliguteration.

While the user-definable constawgis ¢;, ande,.. affect the performance of the marching-window cycle as aemgence
acceleration technique, they dot affect the accuracy of the solution when convergence isnatiadue to the convergence
criterion of Eq. (33) being satisfied.

6.5. Marching-Window / Multizone Cycle

The performance of the marching-window algorithm can beaechd by introducing multizone decomposition inside the
marching-window. Before each iteration, the marchingdeiw subdomairf X < X¢|, is decomposed into several zones of
length no more thap, nodes in each dimension. Then, Steps 1-3 of the marchindewirtycle (see Section 6.4.) are replaced
by Steps 1-3 of the multizone cycle (see Section 6.2.).
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TABLE 1.
Effective iteration count, work, and storage comparisoa @FL number of unity, for the blunt leading edge inviscidesigonic inlet case.
128 x 64 nodes 512 x 256 nodes
cycle iter. work stor. iter. work  stor.
marching-window / multizone 344 1.0 0.11 449 222 091
marching-window 404 1.1 0.11 86.8 389 091
active-domain 55.6 1.3 0.10 1022 39.2 081
multizone 1585 3.8 1.0 318.6 1316 16.0
standard cycle 293.0 6.5 1.0 1391.0 524.3 16.0

6.6. Sweeping-Window / Multizone Cycle

Intended for time-accurate simulations using dual-tine@ging, the sweeping-window algorithm is identical to therohing-
window algorithm, with the exception of no outflow boundaondition forced on the downstream boundary of the sweeping-
window. When the converged solution of the previous timelléy used as initial conditions for the current time leveit n
forcing an outflow condition at the downstream boundary sié@tpattaining faster convergence due to the initial condgi
providing a better “guess” at the downstream boundary. ff#®@same reasons, the sweeping-window cycle can also beaised t
gain extra orders of magnitude of convergence on the solatitained by the marching-window.

7. Numerical Experiments

Three steady state supersonic flowfields and one unsteadfjefidare solved using the different types of cycles mentibne
in the last section, and the performance of each is assessh@ dasis of 1) the number of effective iterations, 2) CPkti
and 3) maximum storage required. To enable a fair compakisbmeen the different cycle strategies, the number of tffec

iterations is defined as ) ] )
number of times an inner node is updated

total number of inner nodes ’ (41)
which is a good measure of the cycle performance as long asafiibe computing effort is spent on the pseudo-time steppin
instead of the residual, due to the overlap of the residualrdenation when a multizone decomposition is used. Thdiaitp
scheme used herein spends three quarters of its compuforg @f the time stepping side, therefore reducing the resid
overlap overhead work and justifying the use of Eq. (41) asrfopmance parameter. In spite of being accurately medsure
the number of CPU seconds is not regarded as a more meanpegfafmance parameter due to the unavoidable bias that
might occur in the programming of the cycles and the high ddpace of the work on the architecture of the computer. @erta
enhancements to the multizone cycle, such as unifying adfarones, could be implemented which would result in a non-
negligible decrease in work, while the use of a vector comp{daf CRAY type) would advantage the longer loops present in
the standard cycle. Therefore, both the number of effedtvations and CPU time are monitored for all test cases.

effective iterations=

7.1. Inviscid Supersonic Inlet with a Blunt Leading Edge

A first comparison between the different cycles is perforrivec steady-state inviscid flow over a 1 m long supersongtinl
Air enters the channel at a Mach number of 5, a pressure of ddkielba temperature of 240 K. The grid size is varied between
128 x 64 nodes and12 x 256 nodes. The user-defined parameters of interest are set ém(@gplicable)

1 1
o = 057 %‘verge: 100 gs Pverge = 5000 gv ¢O = 47 ¢1 = 20, ¢2 = 3, and ¢3 = 9s

where the value of 0.5 given totranslates into a geometric average between the minimuma®Rdition based pseudo-time
step and the maximum CFL condition based pseudo-time step.cdnvergence threshadjd,,. is low enough that a decrease
in &eqe WOUId not result in any noticeable difference of the pressiantours in Fig. 6. It is noted that the use of the entropy
correction by Yeeet al.[19] with ¢ = 0.2 is here used to avoid a carbuncle phenomenon near the baginéeedge.

Table 1 shows the CPU time and effective iterations neededaoh convergence for the marching-window, marching-
window/multizone, active-domain, multizone, and staddarcles. Due to the CFl= 1 restriction on the traveling speed
of the waves in the flowfield to approximately one grid line fieration, the standard cycle requires a number of itematio
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FIGURE 6. Pressure contours for the blunt leading edge invisciérsagmic inlet case obtained using & x 256 grid; the inflow conditions
correspond toaf = 5, P = 4 kPa andT" = 240 K; no difference is noticeable between the pressure costobrained with the different
cycles.

proportional to the number of grid lines along the strearewlisectionj.e. 293 iterations for d28 x 64 mesh to 1391 iterations
fora512 x 256 mesh. The multizone cycle suffers the same symptoms buhbkastra advantage abtallocating work to the
zones where all nodes exhibitasmaller than the user specified threshold, therefore radube computing to a smaller and
smaller domain as the iteration count progresses and theoorerged flow region moves towards the domain exit. Ttgalte
in impressive savings in iteration count of 1.8 times for tkarse mesh and of 4.4 times for the fine mesh. Both the active-
domain cycle and the marching-window cycle decrease futttesiteration count by allowing a computational windowrtavel
in space following the propagation of the waves. This redalt decrease in effective iterations, compared to thelatdrcycle
using the512 x 256 mesh, of 14 and 16 times for the active-domain and marchiimglew respectively. Furthermore, the use
of multizone decomposition inside the marching-windowu®es the pseudo-time stepping effort to the regions regyimiore
iterations to reach convergence, such as the region of sithow upstream of the inlet blunt leading edge, hence tespul
in only 45 effective iterations to reach convergence andwenadl reduction in effective iterations of 31 times congwhto the
standard cycle.

It is reminded that the standard cycle, the multizone cyatel the marching-window cycle (with and without multizone
decomposition) all guarantee that

& < &£erge V iNNEr nodes

once convergence is reached [as previously stated in E}j, (@83ich is a necessary condition for a well-posed accélama
technique. The latter isota property of the active-domain method when the discrétizatencil for the streamwise convection
derivative depends on downstream nodes in locally sup&rflow. The Yee TVD limiter used here has this property, arel th
active-domain algorithm induces a converged residualdbas not satisfy the convergence criterion of Eq. (33).

It could be argued that raising the CFL number would imprineestandard cycle over the others for this particular case.
Investigation on a change of CFL number is not performedjdatdressed in the subsequent test problems. It is noted tha
for many realistic problems dominated by non linear phenmameonlinear stability conditions restrict the use of h@gfhL
numbers until the waves have started to settle down coraitieand for which the use of a fine mesh results in very poor
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TABLE 2.
Effective iteration count, work, and storage comparisarttie backward facing step case foR% x 128 grid.
CFL=1 1<CFL<10
cycle iter. work stor. iter.  work stor.
marching-window / multizone 459 20 1.0 229 10 1.0
marching-window 1166 39 1.0 355 1.2 1.0
multizone 1259 59 43 698 32 43
standard cycle 3164 104 4.3 1054 35 43
i T T T T T T ]
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FIGURE 7. Mach number contours of the backward facing step casainaut using 256 x 128 node mesh; the inflow conditions are set to
a Mach number of 2, Reynolds number per meter of 5 million anaperature of 300 K.

performance of the standard cycle.

7.2. Backward Facing Step

Although the gains in computing efficiency obtained throtiggn marching-window cycle might be expected for an entirely
supersonic problem without any reverse flow regions, wegeddo show in this subsection that the marching-window can
reduce convergence time considerably even when a suladtaatiion of the flowfield is separated.

Air enters the computational domain at a Mach number of 2nRkels number per meter of 5 million and temperature of
300 K. Symmetry conditions are appliedat = —0.015 m and atx, = 0.03 m, inflow atx, = —0.067 m, and outflow at
x; = 0.2 m, and an adiabatic wall boundary condition is in effectwlsere. The Mach number contours shown in Fig. 7 show
the limits of the recirculation regiord (< x; < 0.04) in which 25% of the grid lines along,; and 50% of the grid lines along
X, are placed. The investigation is performed usifj@x 128 mesh, clustered at the surfaces; it is noted that no signffica
difference in the trends is observed using a coarser mek28ot 64 nodes.

A minimum/maximum CFL averaged local time step as specifieHq. (30) is used for all cycles, and the convergence
threshold along with the other user-defined constants aafs to

1 1
g = Oss Everge: 100 gv PDverge = 5000 gv ¢1 - 207 ¢2 - 37 and ¢% =0.
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TABLE 3.
Effective iteration count, work, and storage comparisarttie concatenated channels test case; the mesh siz236 gf128 nodes.
0.1 <CFL<1 0.1 <CFL<10
cycle iter. work stor. iter.  work stor.
marching-window / multizone 431 19 1.0 219 10 1.0
marching-window 1111 40 1.0 444 17 1.0
multizone 1571 7.8 6.2 1215 59 6.2
standard cycle 4547 155 6.2 2342 8.0 6.2
TABLE 4.

Sensitivity of the effective iteration count and work to theer-defined constants for the concatenated channelatesttbe
marching-window/multizone cycle is used with a mesh siz256fx 128 nodes, and a CFL rangel < CFL < 10.

o} ¢ P3 Dverge work ter.

20 3 9 5x 103 1.00 1.0

10 3 9 5% 103 1.20 1.12
40 3 9 5x10° 1.00 1.02
20 15 9 5x 103 1.15 1.12
20 1 9 5% 103 0.96 0.98
20 3 5 5% 103 1.46 141
20 3 18 5x 103 1.19 1.24
20 3 36 5x10° 1.89 1.99
20 3 9 5x10? 1.33 1.40
20 3 9 5x 10* 1.57 1.54

When a variable CFL number is used, it is set to a functiofy,gfas opposed to the iteration count to enable a more adequate
comparison between the different cycles, since the coeverghistory has a different dependence on the iterationtdou
each cycle. Note thd,., stands for the maximum value éfin the computational window, which corresponds to the entir
domain for the multizone and standard cycles. In this cagg, garying betweeri0° and10? is made to induce a CFL number
varying between 1 and 10. The variation in CFL number is resmgsdue to nonlinear stability restrictions on the timgste
size, and it is assumed that an inverse relationship exéttedens,,., and the maximum allowable CFL number for stable and
predictable convergence.

The influence of a change in CFL number on the efficiency of tfferdnt cycles can be seen in Table 2. The marching-
window/multizone cycle at a CFL of unity requires 6.9 timesvér iterations to reach convergence than the standard.cycl
Yet, if the CFL is varied between 1 and 10 the speed-up is rditie 4.6 times. As expected, a rise in the CFL number
greatly helps the propagation of the waves along the streésenslirection for the standard cycle, while the transmissib
the streamwise information is already adequate at a CFL it§ tor the marching-window and marching-window/multizon
cycles. Nevertheless, the recirculation region is thaiten bottleneck of this problem and the number of stepsssery to
solve it is similar for all approaches. For the standardeysince the entire computational domain is computed ayestep,

a region of slow convergence somewhere in the flowfield tedeslin a very high number of effective iterations, whether t
region of slow convergence is very small or not. On the otlaerdh the marching-window algorithm focuses the effort an th
region of slow convergence, consequently resulting in miongiroved algorithm efficiency.

7.3. Concatenated Channels: Shock / Boundary Layer Interactions

The ability of the marching-window algorithm to solve shdtdoundary layer interactions at hypersonic flow conditismsow
tested. The geometry involves the concatenationlof & 0.5 m channel to .69 x 0.38 m channel through 37° compression
ramp. Air enters the first channel at uniform conditionsMf = 5, P = 1000 Pa, andT" = 450 K. Fixed temperature
(Twar = 450 K) wall boundary conditions are applied on bottom and toprutawies, with a grid clustered at both walls. As
for the backward facing step case, a geometric averagettiowastep is utilized to enhance wave propagation throtigh h
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FIGURE 8. Effective pressure contours of the concatenated chauask obtained using5d2 x 256 mesh; air enters the first channel at a
Mach number of 5, a pressure of 1000 Pa and a temperature ¢£.450

aspect ratio cells, while the other user-adjustable patenmare set to
1 1
0 =0.5, Eege= 100 o Prene= 5000 - ¢ =20, ¢,=3, and ¢; =9.

From the effective pressure contours of Fig. 8, two recattah regions are visible: one at the start of the shock fdrme
the37° wedge, and one at the point where the shock impinges on theabfpoundary layer. Both recirculation zones are of
appreciable size due to the very low Reynolds number of thewitbich helps generate thick incoming boundary layers. The
major obstacle in converging this flowfield efficiently confesm the high difference in time scales between the coneacti
dominated flow in the middle of the channels and the viscousidated recirculation zones. Time accurate simulations of
a similar problem indicate that the amount of time requiredthe separated flow regions to reach steady state is tjpical
one order of magnitude more than the time needed for the sttasiture to establish itself. Consequently, one wouldgpre
high pseudo-time steps to be used in the recirculation ztumdast convergence, but unfortunately the step size igdunby
nonlinear stability restrictions which are of importanspecially near the non-converged shock waves. For thesensait is
not surprising that so many iterations are needed for thnelata cycle to reach convergence, as Table 3 shows: 454fidies
for a CFL number varying between 0.1 and 1 and 2342 iterafionthe range.1 < CFL < 10. Similarly to the backward
facing step, the CFL number is linked§g., such that af,., = 10, the CFL number is 10 and &t., = 10°, the CFL number
is0.1.

The marching-window/multizone cycle performs particlylavell as the work is focused on the reverse flow regions, evhil
the rest of the domain is quasi-hyperbolic/parabolic aretisenly a small amount of work to reach convergence (se€kig.
The use of the marching-window coupled with a multizonetstfa makes possible a decrease in effective iterationsiofest
compared to the standard cycle, independently of the CFLbeunnsed, as shown in Table 3.

There might be doubts as to the adequacy of a varying CFL nufobetion of .., as a means to compare different
cycles. For this reason, additional simulations involvihng marching-window/multizone and standard cycles aréopeed
in which the CFL number is made a function of the iterationrtoand raised to 10 as rapidly as the stability conditions
permit. 1930 iterations for the standard cycle are neededdovergence while 197 iterations are needed for the magehi
window/multizone cycle. Again, while a slight increase ffiatency for the standard cycle is apparent, approximatetysame
amount is noticeable for the marching-window/multizoneley

19



B. Parent, J.P. Sislian, “The Use of Domain DecompositioAatelerating the Convergence of Quasi-Hyperbolic Systems
Journal of Computational Physics, 179 (1), 2002, pp. 14@-16

5000

4000

3000

iteration count

2000

1000

TR 1 I |
0 64 128 192 256

FIGURE 9. Location of the marching-window upstream and downstrbaandaries for the concatenated channels case using ticGingr
window/multizone cycle, with a variable CFL numbee. 0.1 < CFL < 10; notice the high amount of work spent on the recirculatiomezo
in the vicinity of X, ~ 128 and X, ~ 218, while very few steps are needed to converge the quasi-bgfeiparabolic regions.

As in the previous test cases, a convergence criteridi.gf = 100 é is found necessary to obtain reasonable accuracy,
and no discernible difference is observed between the oositf properties obtained with the different cycles. Evidooith
the marching-window and the standard cycle guarantee theecgence criterion of Eq. (33) to be satisfied once convergis
attained, the governing equations have multiple rootsalttestir non-linearity, and a different flow solution coulddigtained by
the different cycle strategies. For all test cases preddmaire, however, it is verified that the same root is obtainddpendently
of the acceleration technique.

The sensitivity of the user-adjustable parameters for theching-window cycle is assessed for this test case in Fable
is seen that the performance of the marching-window is rfettfd considerably by a change of the average zone lehgth
or by a change i,, the latter being the number of iterations before a readfrijestreamwise ellipticity sensdgris taken.
For ¢, varied from 10 to 40, the number of effective iterations isetved to change by only 12%, and fr varied from 1
to 15, the number of effective iterations increases by 14%.th@ other hand, the parametérsandg,.,. are seen to affect
the performance of the algorithm considerably. Raighadrom 9 to 36 increases twofold the number of effective itiera,
and increasing... tenfold results in an increase of 54% in the effective iiera count. The high sensitivity of the effective
iterations on eitheg; or ¢... is due to the high dependence of the width of the marchingdainon these parameters. When
the marching-window encloses too tightly a zone of stressawilipticity, the solution needs to be converged locatlyesal
times, hence increasing the work. When the marching-winolevestimates the size of a streamwise elliptic regionhtgke
number of iterations needed locally to converge a streaavefifptic region is spent on a larger portion of the compateal
domain, hence resulting in decreased performance.

7.4. Time Accurate Simulation of an Exploding Cavity in a Supersonic Stream

The performance of the different cycles on a time accurateilsition of a stagnant high pressure flow pocket exploditg in

a Mach 2 air stream is investigated in this subsection. Tihepctational domain has dimensions as shown in Fig. 10, and is
spanned by a grid composed2f6 x 128 nodes of whichl 10 x 38 are allocated to the cavity. Inflow, outflow and symmetry
conditions are applied to the left, right and top bounda®spectively, while an adiabatic wall condition is in effetsewhere.
The mesh is clustered at the inflow and at all surfaces to cayphe turbulent boundary layer correctly and is not alténed
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TABLE 5.
Effective iteration count, work and storage comparisorthiertime accurate simulation of an exploding cavity; the @Bimber is unity.

cycle iterations work storage
multizone 1505 1.0 5.0
sweeping-window / multizone 2034 1.5 1.0
sweeping-window 2980 1.9 1.0
standard cycle 4418 2.0 5.0
01:_ T T T T t Ol:._ T T T T ]
| t=1.5us ] | t =48 us
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FIGURE 10. Effective pressure contours of the exploding cavityeaasing a mesh composed 2if6 x 128 nodes, and a time step of 1.5
microsecond; at = 0, the flow outside the cavity is air uniformly distributed2t= 10 kPa,T = 300 K, and M = 2, while the air inside
the cavity is set ta® = 100 kPa,7 = 2000 K, and M = 0.

time. The flowfield at = 0 for x, > 0 is set to a pressure of 10 kPa, a temperature of 300 K and a flavh kamber of 2,
while for x, < 0, the pressure, temperature and Mach number are set to 10@0®@&K and 0 respectively. The solution is
iterated in pseudo-time starting from the converged swhutif the previous physical time step until the maximum vdlue
the computational domain falls beldj,.. The physical time step)¢, is fixed to1.5 microsecond, while the following user
defined parameters are in use:

1 1
0 =03, Eupe=100 . guge=5000 . ¢ =20. ¢=3. and ¢, =9.

Due to the strict convergence criterion utilized and the afsthe same residual, all acceleration techniques resuhén
same answer at all time steps despite noticeable diffeseinc€PU work, as Table 5 attests: a twofold decrease in work
is achieved through the use of the multizone cycle, whilestiveeping-window/multizone cycle decreases the work by one
quarter. The performance of the sweeping-window is noiqaérly good for this problem as the wave propagation diogc
is more towards time than in the streamwise coordinate dthestoelatively small physical time step. Furthermore, sioaly
20 effective iterations are needed on average per time, fiagebverhead work induced by sweeping becomes more immgprta
as the greater discrepancy observed for this case betweeadhction in effective iterations and CPU work shows. €hsy
nonetheless, a non-negligible fivefold reduction in steratpen using the sweeping-window.

8. Summary and Conclusions

A novel acceleration technique is presented which is aimeateelerating the convergence of the Favre-averaged Navie
Stokes equations in the supersonic/hypersonic regimedafiéllds with large streamwise separated flow regions. Siyil
to the active-domain method [13], the marching-windowsites in pseudo-time a band-like computational domain ofrmah

21



B. Parent, J.P. Sislian, “The Use of Domain DecompositioAatelerating the Convergence of Quasi-Hyperbolic Systems
Journal of Computational Physics, 179 (1), 2002, pp. 14@-16

width which adjusts to the size of the streamwise elliptfioas when encountered. However, contrarily to the adiveain
method, it is shown that the marching-window guaranteesdbigual on all nodes to be below a user-defined thresholtiwhe
convergence is reached, and hence results in the same gedwmiution (within the tolerance of the convergence oty as
the one obtained by standard pseudo-time marching mettradther, a streamwise ellipticity sensor based on the Vigme
splitting [1] is developed which ensures the downstreammidawy of the marching-window to advance sufficiently suct th
regions of significant streamwise ellipticity are contaeéthin the marching-window subdomain. It is noted that lelthe
Vigneron splitting sensor does not capture all possibleastiwise elliptic phenomena, this does not affect the acgust
the final solution and only affects the performance of theamiag-window as an acceleration technique. Also, a mulizo
decomposition is implemented inside the marching-windwwestrict the computing to the zones where the residualaseb
the user-defined convergence threshold. This is shown tiedludecrease the work needed for convergence by closenw? ti
for the problems shown herein.

The use of the marching-window with multizone decompositim a backward facing step and a shock boundary layer
interaction flowfield (where one or several large streamsisgarated region is present) reveals a 4 to 6 times decmease i
storage and a 4 to 8 times decrease in work compared to thdasthcycle. The proposed algorithm is also shown to work well
at a low CFL number in regions of quasi-hyperbolicity/pariatity and is recommended for stiff problems with high niarear
stability restrictions on the time step size. A variant & tharching-window designed for time-accurate simulatisiodserved
to result in a fivefold reduction in storage and 25% reduciiowork for the time-accurate exploding cavity case ingeted
herein. The reduction in computational work through the afsthe marching-window is made possible by focusing the high
number of iterations needed to converge the streamwiseaedaegions to the region in question. The amount of storag
needed is also significantly reduced if no memory is allat&iehe nodes outside of the marching-window subdomain.

The marching-window does not impose any restriction on theretization stencils part of the residual or on the pseudo
time stepping method. While not implemented here, the nooseacceleration techniques available for pseudo-tinppstg
(such as multigrid, block relaxation [31], preconditiogjiNewton-Krylov,etc.) can be used in conjunction with the marching-
window. Furthermore, the marching-window is not limitedhe Favre-averaged Navier-Stokes equations and its éatetos
other governing equations would only require a redefinitbthe ellipticity sensor shown in Eq. (39).

The performance of the algorithm is seen to be sensitive éouter-defined ellipticity threshold constamt.. and the
marching-window minimal widtlps. It is unclear at this stage by how much these parameterswadd to be altered for very
different flow properties and physical domain size. The depacy on the problem setup seems not too severe as the same
values for the user-specified constants are used for alt &msvn in this paper.
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