Heat Transfer Assignment 3 — Fins and Shapes

Instructions

 ξ is a parameter related to your student ID, with ξ_1 corresponding to the last digit, ξ_2 to the last two digits, ξ_3 to the last three digits, etc. For instance, if your ID is 199225962, then $\xi_1=2,\,\xi_2=62,\,\xi_3=962,\,\xi_4=5962,\,$ etc. Keep a copy of the assignment — the assignment will not be handed back to you. You must be capable of remembering the solutions you hand in.

Question #1

Fins are frequently installed on tubes by a press-fit process. Consider a circumferential aluminum fin having a thickness of 1.0 mm to be installed on a 2.5-cm-diameter aluminum tube. The fin length is 1.25 cm, and the contact conductance may be taken from the tables for a 100- μ inch ground surface. The convection environment is at 20° C, and $h=125~{\rm W/m^2\cdot^\circ C}$. Calculate the heat transfer for each fin for a tube wall temperature of 200° C. What percentage reduction in heat transfer is caused by the contact conductance?

Question #2

In certain locales, power transmission is made by means of underground cables. In one example an 8.0-cm-diameter cable is buried at a depth of 1.3 m, and the resistance of the cable is $1.1 \times 10^{-4}~\Omega/\mathrm{m}$. The surface temperature of the ground is $25^{\circ}\,\mathrm{C}$, and $k=1.2~\mathrm{W/m}\cdot{}^{\circ}\,\mathrm{C}$ for earth. Calculate the maximum allowable current if the outside temperature of the cable cannot exceed $110^{\circ}\,\mathrm{C}$. Hint: the heat generation in an electrical cable of length L due to Joule heating is $LR_{\mathrm{elect}}I^2$ in Watts with R_{elect} the resistance in Ohms and I the current in amperes and L the length of the cable in meters.

Question #3

A thin rod of length L and constant cross section area has its two ends connected to two walls which are maintained at temperatures T_1 and T_2 , respectively. The rod loses heat to the environment at T_{∞} by convection. Derive an expression (i) for the temperature distribution in the rod and (ii) for the total heat lost by the rod through convection.

Question #4

Show that the fin efficiency of a fin with a rectangular cross-section and an insulated tip corresponds to:

$$\eta_{\mathrm{f}} = rac{ anh\left(\sqrt{2}\cdot L^{1.5}\cdot\left(rac{h}{kA_{\mathrm{m}}}
ight)^{0.5}
ight)}{\sqrt{2}\cdot L^{1.5}\cdot\left(rac{h}{kA_{\mathrm{m}}}
ight)^{0.5}}$$

with $A_{\rm m} \equiv L \cdot t$ with L the length of the fin, t the thickness of the fin, k the thermal conductivity, and h the convective heat transfer coefficient. Outline all assumptions.

Question #5

Consider a micro satellite in the shape of a hollow sphere orbiting around the earth in space as follows:

Electrical circuits located within the satellite generate power with the amount $q_{\rm gen}$ (in Watts). The temperature within either matter A or matter B can not exceed 600 K for safety reasons. The incoming radiation heat flux from the sun varies between being 0 and being $q_{\rm sun}'' = 1200~{\rm W/m^2}$. The radiation heat flux from the sun may reflect on adjacent solar panels and may thus englobe the microsatellite from all directions. The thermal conductivities are of $k_{\rm A} = 0.5~{\rm W/mK}$ and of $k_{\rm B} = 0.2~{\rm W/mK}$, while the contact conductance between matter A and matter B is of $h_{\rm c} = 24.68~{\rm W/m^2K}$. Knowing that the outer surface of the microsatellite is a black body, and that the dimensions are of $r_1 = 8~{\rm cm}$, $r_2 = 9~{\rm cm}$, $r_3 = 10~{\rm cm}$, do the following:

- (a) Indicate where the maximum temperature will occur (i.e. the precise location within either matter A or matter B).
- (b) Find the maximum allowable q_{gen} that maintains the temperature within

both matter A and matter B to less than 600 K.

(c) Find the temperature on the outer surface of the satellite when the maximum temperature within either matter A or B is of 600 K.

Question #6

Consider a rectangular fin resting on a table as follows:

Knowing that the fin tip is **not** insulated, that $W \gg L$, and that there is no heat transfer between the fin and the table, do the following:

(a) Find the temperature at the fin tip (at x = L) as a function of T_0 and T_{∞} .

(b) Find the heat transfer at the fin base (at x = 0)

Note: you can **not** assume that the thickness t is much smaller than the length L. Outline all assumptions.

Answers

1. 45.2 W.

2. 1181 A.

3. $q = kAm(\cosh(mL) - 1)(T_2 + T_1 - 2T_{\infty})/\sinh(ml)$.

5. 141.4 W.

6.
$$T_{
m L}=T_{\infty}+rac{T_0-T_{\infty}}{\cosh(mL)+rac{h}{km}\sinh(mL)}$$

Due on Wednesday April 3rd at 9:00. Do Questions #1, #5, and #6 only.