2009 Heat Transfer Midterm Exam

April 23rd 2009 19:00 — 21:20

NO NOTES OR BOOKS; USE HEAT TRANSFER TABLES THAT WERE DISTRIBUTED; ANSWER ALL 4 QUESTIONS; TOTAL POINTS: 100 PTS.

Question #1

25 pts. Fins are frequently installed on tubes by a press-fit process. Consider a circumferential aluminum fin having a thickness of 1.0 mm to be installed on a 3.0-cm-diameter aluminum tube. The fin length is 1.5 cm, and the contact conductance may be taken from the tables for a 100- μ inch ground surface. The convection environment is at 30° C, and $h = 140 \text{ W/m}^2 \cdot ^\circ\text{C}$.

- (a) Calculate the heat transfer for each fin for a tube wall temperature of 200°C.
- (b) What percentage reduction in heat transfer is caused by the contact conductance?

Question #2

25 pts. A plate of stainless steel (18% Chrome, 8% Nickel) has a thickness of 4.0 cm and is initially uniform in temperature at 500° C. The plate is suddenly exposed to a convection environment on both sides at 80° C with $h = 250 \text{ W/m}^2 \cdot {}^{\circ}$ C.

- (a) Calculate the time for the center temperature to reach 100°C.
- (b) Calculate the time for the face temperatures to reach 100°C.

Question #3

30~pts. A solid sphere of radius $r_0=1.0~{\rm m}$ is buried in earth. The center of the sphere is at a distance of 5.0 m below the earth's surface. The thermal conductivity of the earth is $k_{\rm earth}=1.2~{\rm W/m\cdot ^{\circ}C}$, and its surface temperature is $25^{\circ}{\rm C}$. Inside the sphere, there is a volumetric rate of heat generation given by $S=S_0[1-(r/r_0)^2]$ with $S_0=3750~{\rm W/m^3}={\rm constant}$. The thermal conductivity of the sphere material is $k_{\rm sphere}=25~{\rm W/m\cdot ^{\circ}C}$. At the interface between the earth and the solid sphere, there is a thermal contact conductance coefficient of $h_{\rm c}=500~{\rm W/m^2\cdot ^{\circ}C}$. Assuming that the temperature distribution inside the sphere is essentially 1-D radial, calculate the following for steady-state conditions:

- (a) the temperature of the earth at the interface between the earth and the sphere;
- (b) the surface temperature of the sphere;
- (c) the maximum temperature inside the sphere.

Question #4

20~pts. A solid cube is heated to a uniform temperature of 520° C. It is then exposed to a convective cooling environment: $h=1000~{\rm W/m^2\cdot ^{\circ}C}$ and $T_{\infty}=20^{\circ}$ C. The length of each side of the cube is $0.05~{\rm m}$. The properties of the cube material are the following: $\rho=8000~{\rm kg/m^3}$, $c=1000~{\rm J/kg\cdot ^{\circ}C}$, and $k=25~{\rm W/m\cdot ^{\circ}C}$.

- (a) How long does it take for the *centre* of each *face* of the cube to cool down to a temperature of 68.4° C?
- (b) At t = 200 s into the cooling process, the cube is wrapped *completely* in excellent insulation. Calculate its equilibrium temperature.

Answers

- 1. 64.5 W, 26.4 %
- 2. 939 s, 879 s
- 3. 400 C, 401 C, 418.5 C
- 4. 200 s, 75.5 C