2009 Heat Transfer Midterm Exam

April 23rd 2009
19:00-21:20

NO NOTES OR BOOKS; USE HEAT TRANSFER TABLES THAT WERE DISTRIBUTED; ANSWER ALL 4 QUESTIONS; TOTAL POINTS: 100 PTS.

Question \#1

25 pts . Fins are frequently installed on tubes by a press-fit process. Consider a circumferential aluminum fin having a thickness of 1.0 mm to be installed on a $3.0-\mathrm{cm}$-diameter aluminum tube. The fin length is 1.5 cm , and the contact conductance may be taken from the tables for a $100-\mu$ inch ground surface. The convection environment is at $30^{\circ} \mathrm{C}$, and $h=140 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$.
(a) Calculate the heat transfer for each fin for a tube wall temperature of $200^{\circ} \mathrm{C}$.
(b) What percentage reduction in heat transfer is caused by the contact conductance?

Question \#2

25 pts . A plate of stainless steel (18% Chrome, 8% Nickel) has a thickness of 4.0 cm and is initially uniform in temperature at $500^{\circ} \mathrm{C}$. The plate is suddenly exposed to a convection environment on both sides at $80^{\circ} \mathrm{C}$ with $h=250 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$.
(a) Calculate the time for the center temperature to reach $100^{\circ} \mathrm{C}$.
(b) Calculate the time for the face temperatures to reach $100^{\circ} \mathrm{C}$.

Question \#3

30 pts . A solid sphere of radius $r_{0}=1.0 \mathrm{~m}$ is buried in earth. The center of the sphere is at a distance of 5.0 m below the earth's surface. The thermal conductivity of the earth is $k_{\text {earth }}=1.2 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$, and its surface temperature is $25^{\circ} \mathrm{C}$. Inside the sphere, there is a volumetric rate of heat generation given by $S=S_{0}\left[1-\left(r / r_{0}\right)^{2}\right]$ with $S_{0}=3750 \mathrm{~W} / \mathrm{m}^{3}=$ constant. The thermal conductivity of the sphere material is $k_{\text {sphere }}=25 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$. At the interface between the earth and the solid sphere, there is a thermal contact conductance coefficient of $h_{\mathrm{c}}=500 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$. Assuming that the temperature distribution inside the sphere is essentially 1-D radial, calculate the following for steady-state conditions:
(a) the temperature of the earth at the interface between the earth and the sphere;
(b) the surface temperature of the sphere;
(c) the maximum temperature inside the sphere.

Question \#4

20 pts . A solid cube is heated to a uniform temperature of $520^{\circ} \mathrm{C}$. It is then exposed to a convective cooling environment: $h=1000 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$ and $T_{\infty}=20^{\circ} \mathrm{C}$. The length of each side of the cube is 0.05 m . The properties of the cube material are the following: $\rho=8000 \mathrm{~kg} / \mathrm{m}^{3}, c=1000 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$, and $k=25 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$.
(a) How long does it take for the centre of each face of the cube to cool down to a temperature of $68.4^{\circ} \mathrm{C}$?
(b) At $t=200 \mathrm{~s}$ into the cooling process, the cube is wrapped completely in excellent insulation. Calculate its equilibrium temperature.

Answers

1. $64.5 \mathrm{~W}, 26.4 \%$
2. $939 \mathrm{~s}, 879 \mathrm{~s}$
3. $400 \mathrm{C}, 401 \mathrm{C}, 418.5 \mathrm{C}$
4. $200 \mathrm{~s}, 75.5 \mathrm{C}$
