2017 Numerical Analysis Midterm Exam

When is the best time for you?

Wed Nov 1 16:30-18:30	11
Thu Nov 2 18:00-20:00	3
Fri Nov 3 10:00-12:00	4
Fri Nov 3 13:00-15:00	6
Fri Nov 3 15:00-17:00	7
Fri Nov 3 17:00-19:00	12
Sat Nov 4 11:00-13:00	7
Mon Nov 6 16:30-18:30	24
Wed Nov 8 16:30-18:30	17

Poll ended at 2:04 am on Monday October 30th 2017. Total votes: 91. Total voters: 34.

Monday 6th November 2017 16:30 — 18:30

NO NOTES OR BOOKS; ANSWER ALL 4 QUESTIONS; ALL QUESTIONS HAVE EQUAL VALUE.

Question #1

It is desired to minimize the number of bits that can store a certain range of numbers. The range lower limit is 3×10^{-65} , and the range upper limit is 10^{32} . Do the following:

- (a) Find the minimum number of bits needed to store the exponent.
- (b) Find the minimum number of bits needed to store the significand.
- (c) Find the total number of bits needed.

Question #2

Consider a system of equations expressed as:

AX = B

with

$$A = egin{bmatrix} -2 & 0 & 0 & 0 \ 0 & 3 & -1 & 5 \ -4 & 0 & 4 & 2 \ 0 & 6 & -2 & -5 \end{bmatrix}$$

Find the matrices L and U by hand such that A = LU and L is a lower-triangular matrix and U is a upper-triangular matrix.

Question #3

- (a) Consider a number of real type. Knowing that the machine accuracy (non-denormal) is of $\epsilon_{\rm mach} = 9.5367 \times 10^{-7}$ and that the maximum positive number must be at least as high as 10^{23} , do the following:
 - (i) find the minimum number of bits for the exponent;
 - (ii) find the minimum number of bits for the significand.
- (b) Consider the number 9.5367×10^{-4} stored in memory as a real type. Knowing that the exponent of the real type has 4 bits what is the minimum number of bits that the significand should have if the relative error on the number is less than 0.01?

Question #4

Consider the function $f = \sin(x)$ with x in radians. Find the root f = 0 for the initial condition $x_0 = 2.8$ using the following iterative method:

$$x^{n+1} = x^n - 0.05 rac{f(x^n)}{f'(x^n)} - 0.95 rac{f(x^n)(x^{n-1} - x^{n-2})}{f(x^{n-1}) - f(x^{n-2})}$$

Do so in two different ways:

- (a) By hand, with enough iterations to yield a root accurate to at least 4 significant digits. How many iterations are needed to find a root accurate to at least 4 significant digits?
- (b) With a C code that starts as follows:

```
#include <stdio.h>
#include <stdib.h>
#include <math.h>
#include <assert.h>

double f(double x) {
   double ret;
   ret=sin(x);
   return(ret);
}

double dfdx(double x) {
   double ret;
   ret=cos(x);
   return(ret);
```

```
int main(void){
```