Numerical Analysis Questions & Answers

Question by Student 201529190

Dear Professor , for the work times of diagonal matrix. To turn the number to zero from bottom. At row_N no work so, $work_{N=0} = o$. At row_{N-1} , we need turn $A_{N-1,N}$ to 0. It use 4 works (2moct+2add).so, $work_{N-1} = 4$

At row_{N-2} , we need turn $A_{N-2,N-1}$ and $A_{N-2,N}$ to 0. It use 8 works 2* $(2moct+2add).so\ work_{N-2}=8$

then

$$egin{aligned} so\ work_{N-3}&=12,\, work_{N-n}&=4n\ total\ work\ &=\sum_{m=1}^{N-1}4 imes(N-n)=2*(N-1)^2\propto N^2\,.\ then\ \it C\it 2=\it 2 \end{aligned}$$

This is a very good explanation. There is only a small problem with it: you should have written B instead of X within the last column. 3 points bonus boost.

Question by Student 201700278

Dear Professor,

For Question 1 in Assignment 3, may I know is Gaussian decomposition means Gaussian elimination? I tried to search it online but the results are mostly showing either Gaussian Elimination or LU decomposition. I am confused which method should we use in that question?

Question by Student 201427116

Professor, I have a question about what we studied at last class. Matrices that used in last class are below:

$$A = egin{bmatrix} -2 & 2 & -1 \ 6 & -6 & 7 \ 3 & -8 & 4 \end{bmatrix} P_{12} = egin{bmatrix} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix} m_1 = egin{bmatrix} 1 & 0 & 0 \ rac{1}{3} & 1 & 0 \ -2 & 0 & 1 \end{bmatrix} \ P_{23} = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix}$$

With only Gauss Elimination, we can't handle the "zero" pivot. We must use permutation matrix, as a result, the Upper triangular matrix transformed from A is below:

$$P_{23}m_1P_{12}A=U=egin{pmatrix} 6 & -6 & 7 \ 0 & -5 & rac{1}{2} \ 0 & 0 & rac{4}{3} \end{pmatrix}$$

And the next step is to get the Lower triangular matirx, L. At first, I thought that L had to be $(P_{23}m_1P_{12})^{-1}$. Because A can be expressed as $A=(P_{23}m_1P_{12})^{-1}$ and we used these same method in A=LU decomposition to get Lower triangular matrix. But you added more processes and concluded that $L=(P_{23}m_1P_{23})^{-1}$.

 $I \ wonder \ why \ L \ must \ be \ (P_{23}m_1P_{23})^{-1}, \ not \ (P_{23}m_1P_{12})^{-1}.$

Well, try it. Calculate $(P_{23}M_1P_{12})^{-1}$ and see if that is lower triangular.. If not, you answered your question.

Question by Student 201427152

Dear Professor, in last class, When you explained "why put the minus (-) next to RHS", You wrote the 3rd row is

$$L[0][0]*V[0] + L[0][1]*V[1] + L[0][2]*V[2] = B[2]$$

So, you wrote

$$L[0][2]*V[2] = B[2] - L[0][0]*V[0] + L[0][1]*V[1] \\$$

But, I think it is not 3rd row. because it is B[0] and 3rd row is

$$L[2][0]*V[0] + L[2][1]*V[1] + L[2][2]*V[2] = B[2]$$

Isn't there any wrong in your notation?

Is that when I wrote the code using the online C IDE? I may have made a mistake

when explaining the logic on the blackboard. Of course, the third row should read

$$L[2][0] * V[0] + L[2][1] * V[1] + L[2][2] * V[2] = B[2]$$

Good observation. 1 point bonus.

Question by Student 201627131

Professor, I wonder about partical pivoting. In partical pivoting, I learned to interchange rows to put largest possible magnitude number within column on pivot. But, I think if interchanging row to put smallest absolute number on pivot, calculation process is more easy because some numbers can be eliminated by pivot multiply integer. Is there a reason to use largest number on pivot?

I can't understand what you mean. Why would putting the smallest number on the pivot result in less computing effort?

Question by Student 201327139

Professor, In Q.2, I found A_n , using Jacobian,

$$A_n = igg(egin{array}{ccc} 4x_n^3 & 1 \ y_n & x_n + 1.5 y_n^{(0.5)} \ \end{pmatrix},$$

and A[0][1]=1. I was writing C code for this matrix and trying to make A[1][0]=0 (define double A[2][2], x, y and $x_n = 1.0, y_n = 1.0$),

$$A_0 = \left(egin{array}{cc} 4 & 1 \ 0 & 2.25 \end{array}
ight).$$

 $But, \ when \ I \ defined \ double \ A[1][1],$

$$A_n \; matrix \; became \; A_n = egin{pmatrix} 4 & 0 \ 0 & 2.5 \end{pmatrix}.$$

Why A[0]/1 = 0 and A[1]/1 = 0 when I define double A[1]/1 ? ?

I don't understand... Why are you defining "double A[1][1]"? You should rather define A only once as "double A[N][N]".