Numerical Analysis Assignment 5 — Curve Fitting and Interpolation

Question #1

Consider the following set of data points:

x	y
0.1	0.03
0.3	0.06
0.8	0.07
1.1	0.1

Fit the curve $y = C_1 + C_2\sqrt{x} + C_3x$ through the latter data with C_1 , C_2 , and C_3 some constants determined through the method of least squares.

Question #2

Consider the following set of data points:

\overline{x}	y
0.1	0.2
0.3	0.7
0.7	0.6

Find an expression y(x) that fits through every data point using

- (a) a Vandermonde polynomial
- (b) a Lagrange polynomial
- (c) a Newton polynomial

Question #3

You obtain a polynomial of degree 3 that yields y as a function of x from 4 data points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , (x_4, y_4) . Knowing the polynomial coefficients, determine the minimum number of arithmetic operations (additions, subtractions, multiplications, and divisions) necessary to calculate y as a function of x from x = 0 to x = 1 using a step $\Delta x = 0.01$ for

- (a) A Vandermonde polynomial.
- (b) A Lagrange polynomial.
- (c) A Newton polynomial.

Answers

- 1.
- 2.
- $3.\ 808,\,1943\;\mathrm{or}\;1741,\,1111.$

Due on Monday 19th November at 16:30. Do all problems.