Numerical Analysis Assignment 6 — Piecewise Interpolation and Splines

Question #1

Consider the following set of data points:

\overline{x}	y
0.1	0.03
0.3	0.06
0.8	0.07
1.1	0.1

Write a function f in C that returns y given x in the range $x_1 \le x \le x_4$ using piecewise linear interpolation:

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
double f(double x) {

EDIT Numerical_Analysis_A6Q1.c
```

_ , _ ,

Question #2

Consider the following data points:

\overline{x}	y
1	3
3	7
8	6
10	9
12	7
14	12

Do the following:

- (a) Using a cubic spline, find the value (by hand) of y at x = 6. Derive proper boundary conditions and do basic verifications to ensure that your answer is correct.
- (b) Using a Lagrange polynomial, find the value (by hand) of y at x = 6. Compare to the result obtained in (a) and discuss.

Question #3

Consider 9 nodes arranged as follows:

with the following values and x-y coordinates:

Node	x	y	ϕ
1	0	?	100
2	?	?	120
3	1	?	150
4	0	1	160
5	?	1	170
6	1	1	190
7	0	2	200
8	?	2	230
9	1	2	270

using a multidimensional piecewise-linear interpolation, it is found that:

$$\phi_{x=0.2,y=1.6} = 190$$

and

$$\phi_{x=0.8,y=0.8} = 170$$

Knowing that

$$x_2=x_5=x_8$$

$$y_1=y_2=y_3$$

find (in no particular order):

- (a) The y coordinate of nodes 1, 2, and 3.
- (b) The x coordinate of nodes 2, 5, and 8.

${\bf Question}~\#4$

Consider the following data points:

x	f(x)
1	2
2	4
4	3

It is given that at x = 1, f''' = 0. Using a cubic spline, find the value of f(x) at x = 3. Specifically, do the following:

- (a) Derive a boundary condition function of bs at the left boundary.
- (b) Derive a boundary condition function of bs at the right boundary.
- (c) Write down the equation for the center node function of bs.
- (d) Solve the b equations in (a), (b), and (c) and evaluate f at x = 3.
- (e) Perform basic verifications to ensure that your answer is correct.

Answers

3. -0.9, 0.733.

4. $\frac{13}{3}$.

Reminder

Equations for inner nodes within cubic splines:

$$egin{aligned} f_i(x) &= a_i (x - x_i)^3 + b_i (x - x_i)^2 + c_i (x - x_i) + d_i \ d_i &= y_i \ a_i &= (b_{i+1} - b_i)/(3\Delta x_i) \; ext{ for } 1 \leq i \leq N-1 \ c_i &= rac{\Delta y_i}{\Delta x_i} - b_i \Delta x_i - \left(rac{b_{i+1} - b_i}{3}
ight) \Delta x_i \; ext{ for } 1 \leq i \leq N-1 \ \Delta x_{i-1} b_{i-1} + 2 \left(\Delta x_i + \Delta x_{i-1}
ight) b_i + \Delta x_i b_{i+1} = 3 \left(rac{\Delta y_i}{\Delta x_i} - rac{\Delta y_{i-1}}{\Delta x_{i-1}}
ight) \; ext{ for } 2 \leq i \leq N \ -1 \end{aligned}$$

Due on Monday 26 November at 16:30. Do Questions #1, #3, and #4 only.