Computational Aerodynamics Assignment 5 — Boundary Conditions

Question #1

Consider the following domain:

The freestream properties correspond to $M_{\infty}=2, T_{\infty}=300$ K, $P_{\infty}=1$ atm, $\theta=30^{\circ}$ and the properties on the nodes at the iteration n are as follows:

Node	P^n , atm	T^n, K	$u^n,\mathrm{m/s}$	$v^n,\mathrm{m/s}$
1	1.0	300	400	-400
2	1.1	310	300	-300
3	1.1	310	300	-300
4	1.2	320	200	-300
5	1.2	330	200	-200
6	1.3	340	100	-200
7	1.3	340	100	-100
8	1.4	350	100	-100
9	1.4	360	100	-100

Knowing that the node spacing is constant, do the following:

- (a) Find the properties at iteration n + 1 at node 1 using a 2nd degree polynomial to extrapolate the properties.
- (b) Find the properties at iteration n+1 at node 9 using a 2nd degree polynomial to extrapolate the properties.

Outline clearly what kind of boundary condition (subsonic inflow/outflow, supersonic inflow/outflow) you are choosing and why.

Question #2

Consider the following domain:

The freestream properties correspond to $M_{\infty}=0.7, T_{\infty}=300 \text{ K}, P_{\infty}=1 \text{ atm},$ $\theta=70^{\circ}$ and the properties on the nodes at the iteration n are as follows:

Node	P^n , atm	T^n, K	$u^n,\mathrm{m/s}$	$v^n,\mathrm{m/s}$
1	1.0	300	100	-80
2	1.1	330	130	-100
3	1.1	350	150	-130
4	1.2	380	170	-160

Knowing that the node spacing is constant, do the following:

(a) Find the properties at iteration n + 1 at node 1 using a 1st degree polynomial to extrapolate the properties.

Outline clearly what kind of boundary condition (subsonic inflow/outflow, supersonic inflow/outflow) you are choosing and why.

Question #3

Consider a computational domain as follows:

with the gas constant R=286 J/kgK, the ratio of specific heats $\gamma=1.4$, $P_{\infty}=2$ atm, $T_{\infty}=300$ K, and $M_{\infty}=0.8$. Knowing the properties at nodes 1, 2, 3, and 4 at time level n:

Node	x, m	y, m	P^n , Pa	T^n, \mathbf{K}	$u^n,\mathrm{m/s}$	$v^n,\mathrm{m/s}$
1	1.00	1.00	90000	310	400	30
2	0.99293	1.00707	90000	310	380	20
3	0.97879	1.02121	90000	350	350	10
4	0.96464	1.03535	90000	330	340	0

Do the following:

- (a) Determine what kind of boundary condition node 1 is.
- (b) Find the pressure and temperature at time level n+1 at node 1 using a 2nd degree polynomial to extrapolate the properties from the inner nodes 2, 3 and 4.

Hint: the spacing between the nodes 4, 3, 2, and 1 can not be assumed constant.

Answers

- 1.
- 2. 1 atm, 310 K, 110 m/s, -70 m/s.
- 3. 267.5 K, 90 kPa.

Due on Thursday May 9th at 16:30. Do all questions.