Computational Aerodynamics Assignment 7 — Flux Discretization II

Question #1

Consider a system of equations $\partial U/\partial t + \partial F/\partial x = 0$ with F = AU, $A = L^{-1}\Lambda L$ and with:

$$\Lambda = egin{bmatrix} u & 0 \ 0 & u-a \end{bmatrix} \quad L = egin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix} \quad U = egin{bmatrix} u \ a \end{bmatrix}$$

The node properties correspond to:

Node	$u, \mathrm{m/s}$	$a, \mathrm{m/s}$
i-1	0	100
i	10	110
i+1	9	105
i+2	-10	100

Do the following:

- (a) Find $F_{i+1/2}^+$ with a min mod2 limiter 2nd-order FVS scheme.
- (b) Find $F_{i+1/2}^-$ with a minmod2 limiter 2nd-order FVS scheme.
- (c) Find $F_{i+1/2}$ with a minmod2 limiter 2nd-order FVS scheme.

Question #2

Consider a system of equations $\partial U/\partial t + \partial F/\partial x = 0$ with F = AU, $A = L^{-1}\Lambda L$ and with:

$$\Lambda = egin{bmatrix} u & 0 \ 0 & u-a \end{bmatrix} \quad L = egin{bmatrix} 1 & 2 \ 0 & 1 \end{bmatrix} \quad U = egin{bmatrix} u \ a \end{bmatrix} \quad F = egin{bmatrix} u^2 + 2a^2 \ a(u-a) \end{bmatrix}$$

The node properties correspond to:

Node	u	a
$\overline{i-1}$	0	100
i	0	110
i+1	0	105
i+2	0	100

For the primitive variable vector set to:

$$Z=U=\left[egin{array}{c} u\ a \end{array}
ight]$$

and using a second-order-upwind slope-limited FDS scheme with the minmod2 limiter, reconstruction evolution, and arithmetic averaging, do the following:

- (a) Find the primitive variable vector on the left and right sides of the interface, $Z_{\rm L}$ and $Z_{\rm R}$.
- (b) Find the flux at the interface $F_{i+1/2}$.

Note: both u and a are non-dimensional.

Question #3

You wish to solve numerically the following scalar equation:

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0$$

with $f = \frac{1}{2}u^2$. At a certain time level, u corresponds to:

Node	x	u
1	0.0	4
2	0.1	3
3	0.2	3
4	0.3	4
5	0.4	5
6	0.5	8
7	0.6	11
8	0.7	12

Using a WENO 2nd-3rd order interpolation of the primitive u reconstructed over a FDS scheme with arithmetic averaging and with optimal weights set to $\gamma_0 = \frac{1}{3}$ and $\gamma_1 = \frac{2}{3}$, it is desired to find the flux at the interface between node 4 and node 5, i.e. $f_{4.5}$. For this purpose, do the following:

- (a) Find $u_{\rm L}$ between node 4 and 5 using WENO3.
- (b) Find u_R between node 4 and 5 using WENO3.
- (c) Find $f_{4.5}$ using FDS with $u_{\rm L}$ and $u_{\rm R}$ found in (a) and (b).

Answers

- $1.\ \ 2300, \ 0\ m^2/s^2; \ 20190, \ \text{-}10080\ m^2/s^2.$
- 2. 23928.125, -11692.1875.
- 3. $4.5, \frac{1465}{326}, 10\frac{26569}{212552}$

Due on May 30th at 16:30. Do Questions #2 and #3 only.