Computational Aerodynamics Questions & Answers

Question by Prasanna

Professor, I am a bit confused about question #5 of Assignment 4. I have to find

$$rac{\partial F_3}{\partial U_4} = rac{\partial (
ho u^2 + P)}{\partial U_4} = rac{\partial (
ho u^2)}{\partial U_4} + rac{\partial P}{\partial U_4}$$

and the difficult part seems to be in determining the $\frac{\partial P}{\partial U_4}$ term. The alternative method you taught involves using the chain rule, for example,

$$\frac{\partial F_3}{\partial U_4} = \frac{\partial F_3}{\partial \rho_1} \frac{\partial \rho_1}{\partial U_4} + \frac{\partial F_3}{\partial \rho_2} \frac{\partial \rho_2}{\partial U_4} + \frac{\partial F_3}{\partial u} \frac{\partial u}{\partial U_4} + \frac{\partial F_3}{\partial \phi} \frac{\partial \phi}{\partial U_4}$$

where $F_3 = F_3(\rho_1, \rho_2, u, \phi)$ and ϕ is some variable. For this problem, ϕ has to be a function of U_1, U_2, U_3, U_4 and also a function of P such that I can evaluate $\frac{\partial \phi}{\partial U_4}$. But then if I could express P in terms of ϕ which is a function of U_1, U_2, U_3, U_4 , I would use the first method which you taught to evaluate the flux jacobian terms instead. I would like your comment regarding this.

You don't necessarily need to express ϕ as a function of U to determine $\partial \phi/\partial U$ in the same way as you don't need to express F as a function of U to obtain $\partial F/\partial U$.

Question by Van Tien

Professor, in Assignment 5, Question #3, for the extrapolation, I am confused to use the 1D-Lagrange interpolation or 2D-Lagrange interpolation. In the case of 1D-Lagrange interpolation, I am not sure the polynomial function is based on x or y coordinate. In the case of 2D-Lagrange interpolation, I think I need more information from the other nodes.

Use a 1D extrapolation polynomial. 2D is too time consuming to compute.

Question by Student 201983196

 $Professor, in \ Assignment 7, \ Question \#2, \ How \ do \ I \ calculate \ this \ equation, \ rac{|A|(Z_L,Z_R)}{2}(U(Z_R)-U(Z_L)) \ ? \ Is \ rac{|A|(Z_L,Z_R)}{2} \ 2X1 \ matrix ? \ But \ (U(Z_R)-U(Z_L)) \ also \ is \ 2X1 \ matrix ? \ I \ don't \ know \ how \ to \ calculate \ F(i+rac{1}{2}) = rac{F(Z_L)+F(Z_R)}{2} + rac{|A|(Z_L,Z_R)}{2}(U(Z_R)-U(Z_L))$

No, |A| is a 2 imes 2 matrix determined from an average state function of Z_L and Z_R .

Question by Prasanna

Professor, for Assignment #7, Question #3, are the answers posted in the following order: u_L , u_R in decimal digits, u_R in fraction, $f(u_L)$ in decimal digits, $f(u_L)$ in fraction respectively?

I updated the answers to make them more clear.

Question by Student 201983196

Professor, In Assignment#7, Question#2 (b), I use 2nd order polynomial about node(4,5,6) and node(5,6,7). and then using optimal weight, calculate u_R . but my solution is wrong. I don't know how to solve this Question#2(b).

Hm, I see a problem in your approach. You shouldn't be finding a polynomial when determining the flux with a TVD minmod2 limiter.

Question by Student 201627128

Professor, in class when you explained how to find WENO3, you found a highest degree polynomial through the data points. Using a similar approach I was able to find u_L equal to 4.5 as in the solutions, however, when I apply the same strategy to find u_R , I get 4.25 instead, which does not match the solution. I tried to do it in reconstruction evolution and again found 4.5 for u_L but this time u_R becomes 5. Is there a separate approach to find u_R ?

I don't understand why using reconstruction-evolution would give you a different answer. You need to find u_R by interpolating u. Once u is interpolated and u_L and u_R are found, then apply reconstruction evolution.