Intermediate Thermodynamics Questions & Answers  




Yes you are correct. The 9% error comes from the fact that we assumed $\bar{q}\approx\sqrt{\overline{q^2}}$. Very good observation. But for completeness you should explain what the definition of $f(v_x)$ is.




Great, this makes your previous post clearer!




Parts per million of species X means number of molecules/atoms of species X per millions of molecules/atoms in the mixture.




It's a good effort but your solution and the answer are off. You can not assume $n$ is constant in this process for the air. As the heat is added, $n$ will vary. You need to rather set the pressure of the argon equal to the one of the air. If you assume a polytropic process for the air, I'll give you A0 at the most. Also, please use \$\$ instead of \$ for long mathematical expressions — this will make your post easier to read.




You should take into consideration kinetic energy (flow speed) when it's possible to do so. Thus, if there is enough information to determine velocity of the gas, then take into account kinetic energy. Otherwise, there is no choice but to neglect it.



$\pi$ 